Spelling suggestions: "subject:"fibrous composites bimechanical properties"" "subject:"fibrous composites bymechanical properties""
1 |
Mechanical properties of high performance fibers vis-a-vis applications in flexible structural compositesSharma, Varunesh 12 1900 (has links)
No description available.
|
2 |
Mechanical response of fiber-reinforced soilLi, Chunling 28 August 2008 (has links)
Not available / text
|
3 |
Cellulose fiber reinforced nylon 6 or nylon 66 compositesXu, Xiaolin. January 2008 (has links)
Thesis (Ph.D)--Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 2009. / Committee Chair: John D. Muzzy; Committee Co-Chair: Youjiang Wang; Committee Member: Art Ragauskas; Committee Member: Donggang Yao; Committee Member: Karl Jacob. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
4 |
Scale and boundary conditions effects in fiber-reinforced compositesJiang, Mingxiao 05 1900 (has links)
No description available.
|
5 |
Determination of the tensile strength of the fiber/matrix interface for glass/epoxy & carbon/vinylesterUnknown Date (has links)
The tensile strength of the fiber/matrix interface was determined through the development of an innovativetest procedure.Aminiature tensile coupon with a through-thickness oriented, embedded single fiberwas designed. Tensile testing was conducted ina scanning electron microscope (SEM)while the failure process could be observed.Finite element stress analysis was conducted to determine the state of stressat the fiber/matrix interface in the tensile loaded specimen, and the strength of the interface.Test specimensconsistingof dry E-glass/epoxy and dry and seawater saturatedcarbon/vinylester510Awere preparedand tested.The load at the onset of debondingwascombined withthe radial stressdistributionnear thefree surface of the specimento reducethe interfacial tensile strength. For glass/epoxy, was 36.7±8.8MPa.For the dryand seawater saturated carbon/vinylester specimensthetensilestrengthsof the interface were 23.0±6.6 and 25.2±4.1MPa, respectively.The difference is not significant. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
6 |
Cellulose fiber reinforced nylon 6 or nylon 66 compositesXu, Xiaolin 20 August 2008 (has links)
Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding.
Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30 % fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30 %fiber can reach 5GPa;with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa.
The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.
|
7 |
Effect of fiber/Matrix Interphase on the Long Term Behavior of Cross-Ply LaminatesSubramanian, Suresh 25 January 2008 (has links)
A systematic study was conducted to examine the influence of fiber surface treatment and sizing on the formation of fiber-matrix interphase and its effects n the mechanical properties of composite laminates. Three material systems having the same Apollo graphite fibers and HC 9106-3 toughened epoxy matrix, but with different fiber surface treatments and sizings were used in this study. The fibers used in the 810A and 820 A systems received 100% and 200% industry standard surface treatments respectively and were sized with Bisphenol-A unreacted epoxy material. The 810 O system was manufactured with 100% surface treated fibers that were sized with pvp (polyvinylpyrrolidone), a thermoplastic material.
The presence of different interphase in these materials was confirmed using a permanganic etching technique. Results indicate that the interphase is discontinuous and made of linear chain polymeric material in the 810 A system. The interphase in the 810 O system has a gradient morphology while the 820 A system does not possess a well defined interphase.
Mechanical test results indicate that the 810 O system significantly greater longitudinal tensile strength and failure strain compared to the 810 A system. The 810 A and 820 A systems have similar longitudinal tensile properties. Transverse tensile test results indicate that the 820 A system has the highest strength while the 810 O system has the lowest strength. The (0,90₃), cross-ply laminates from the three material systems exhibit different damage mechanisms and failure modes under monotonic tensile loading.
Fatigue test results indicate that the 810 O laminates have longer fatigue lives at higher load levels and shorter fatigue lives at lower load levels compared to the 810 A laminates. The 820 A laminates have longer life compared to the other two materials systems, at all three load levels. The 810 O material exhibits greater damage and stiffness reduction than the other two materials. The 810 A and 820 A systems exhibit a brittle stress concentration controlled failure, while the pvp sized 810 O system exhibits a global strain conuolled failure.
A micromechanics model was developed to investigate the role of the interphase on the tensile strength of unidirectional laminates. A new parameter called the ‘efficiency of the interface’, is introduced in the model. A simple scheme that uses the experimentally determined tensile modulus of unidirectional laminates in a concentric cylinders model, is described to estimate the interfacial efficiency. The tensile fatigue performance of cross-ply laminates is predicted using this micromechanics model in a cumulative damage scheme. The predicted fatigue lives and failure modes agree well with experimental results. / Ph. D.
|
8 |
Effects of fiber type on the tribological behavior of polyamide compositesWeick, Brian L. 19 October 2006 (has links)
An experimental and analytical study of the tribological behavior of polymer composites is presented. Glass, aramid, and carbon fiber-filled polyamide (Nylon 6,6) composites serve as models for understanding friction and wear processes encountered when polymer composites are used in tribological applications. Experimental results not only include measurements of friction and wear, but surface temperatures produced by frictional processes during oscillating contact experiments. Since an optically flat, transparent sapphire disk is used as the oscillating countersurface, surface temperatures can be measured directly at the interface using an infrared microscope.
Experimental results show that the presence of fibers in the polyamide matrix lowers wear, friction, and surface temperature when compared with the unfilled polymer. Rationale for this improved tribological behavior is presented and discussed. Fiber-type is shown to have a direct influence on the tribological behavior of the polymer composite, and the chemical behavior at and near the interface is shown to be significant by examining worn and transferred material through surface analytical techniques. In particular, evidence is presented for the tribochemical degradation of intramolecular bonds in the polyamide macromolecule.
Measurements of surface temperatures are compared with theoretical predictions using models for the real area(s) of contact, and results from “scanning” experiments are also presented in which the infrared microscope is used to measure surface temperatures at possible real areas of contact within the apparent contact region. Instantaneous measurements of surface temperature and friction over a single cycle of motion are also presented which allows for the performance of a frequency domain analysis. This technique not only shows the frequency content of the friction and surface temperature signals, but it also shows correlations between these two parameters. The role of intermolecular attractions in frictional processes is addressed, and evidence for relatively strong intermolecular attractions between the polyamide surface and sapphire disk is discussed. / Ph. D.
|
9 |
Dynamic mechanical analysis of graphite/epoxy composites with varied interphasesElmore, Jennifer Susan 31 October 2009 (has links)
Dynamic mechanical analysis (DMA) has been used extensively to characterize polymeric materials. This thesis investigates the use of this technique to characterize composite materials. Four material systems, all having the same fiber and the same matrix material, were systematically altered with different interphase regions. Initial run data indicates that the variation in fiber sizings create different interphase regions that are detectable by DMA. However, some post-cured specimens revealed that those differences are reduced with further heat treatment. Fiber sizing variation also affects the material response to thermal and mechanical cycling. Different fiber surface treatments have little effect on the dynamic mechanical response of the materials. It is shown that DMA is a test method that yields repeatable results and is capable of detecting small changes in composite constituents. / Master of Science
|
10 |
Fracture properties of fibre and nano reinforced composite structuresRamsaroop, Avinash January 2007 (has links)
Thesis (M.Tech.: Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2007
xvi, 123 leaves / Interlaminar cracking or delamination is an inherent disadvantage of composite materials. In this study the fracture properties of nano and fibre-reinforced polypropylene and epoxy composite structures are examined. These structures were subjected to various tests including Single Edge Notched Bend (SENB) and Mixed Mode Bending (MMB) tests. Polypropylene nanocomposites infused with 0.5, 1, 2, 3 and 5 weight % nanoclays showed correspondingly increasing fracture properties. The 5 weight % specimen exhibited 161 % improvement in critical stress intensity factor (KIC) over virgin polypropylene. XRD and TEM studies show an increase in the intercalated morphology and the presence of agglomerated clay sites with an increase in clay
loading. The improvement in KIC values may be attributed to the change in structure.
Tests on the fibre-reinforced polypropylene composites reveal that the woven fibre structure carries 100 % greater load and exhibits 275 % lower crack propagation rate than the chopped fibre specimen. Under MMB conditions, the woven fibre structure exhibited a delamination propagation rate of 1.5 mm/min which suggests delamination growth propagates slower under Mode I dominant conditions. The woven fibre / epoxy structure shows 147 % greater tensile modulus, 63 % greater critical stress intensity factor (KIC), and 184 % lower crack propagation
rate than the chopped fibre-reinforced epoxy composite. MMB tests reveal that the load carrying capability of the specimens increased as the mode-mix ratio decreased, corresponding to an increase in the Mode II component. Delamination was through fibre–matrix interface with no penetration of fibre layers. A failure envelope was developed and tested and may be used to
determine the critical applied load for any mode-mix ratio.
The 5 weight % nanocomposite specimen exhibited a greater load carrying capability and attained a critical stress intensity factor that was 10 % less than that of the fibre-reinforced polypropylene structure, which had three times the reinforcement weight. Further, the nanocomposite exhibited superior strain energy release rates to a material with ten times the reinforcement weight. The hybrid structure exhibited 27 % increase in tensile modulus over the conventional fibre-reinforced structure. Under MMB conditions, no significant increase in load carrying capability or strain energy release rate over the conventional composite was observed.
However, the hybrid structure was able to resist delamination initiation for a longer period, and it also exhibited lower delamination propagation rates.
|
Page generated in 0.1029 seconds