Spelling suggestions: "subject:"filtrage collaboratif"" "subject:"filtrage collaboratifs""
1 |
Personalization in e-commerce : a procedure to create and evaluate business relevant recommendation systems / La personnalisation des sites e-commerce : une procédure pour créer et évaluer les systèmes de recommandations pertinents pour les entreprisesGeuens, Stijn 25 April 2017 (has links)
Les systèmes de recommandation sont très étudiés dans la littérature sur l’apprentissage automatique, ce qui a permis la création de nombreux algorithmes. Cette thèse doctorale va au-delà de simples propositions de nouveaux algorithmes en tirant parti des toutes dernières techniques et en étudiant les interactions de ces techniques avec diverses sources de données. Nous nous sommes penchés sur la création de canevas capables d’aider les universitaires et les décideurs du marché dans le cadre du développement des systèmes de recommandation dans le contexte du e-commerce. Concrètement, cette thèse apporte à la littérature de sept manières différentes. Premièrement, nous décrivons et validons dans le chapitre I un cadre devant servir à évaluer les algorithmes de filtrage collaboratif. Deuxièmement, nous proposons dans le chapitre II un cadre destiné à développer et à évaluer des systèmes de recommandation hybrides, que nous validons à partir de données historiques réelles tirées du site de La Redoute. Troisièmement, le chapitre II introduit l’importance des caractéristiques dans la littérature. Quatrièmement, les algorithmes offrant les meilleurs résultats dans les tests hors-ligne sont utilisés dans le chapitre III comme base pour la création de deux systèmes de recommandation pour la maximisation du chiffre d’affaires. Cinquièmement, nous proposons, un cadre pour étudier trois effets des systèmes de recommandation sur les indicateurs tout au long du tunnel d’achat. Sixièmement, nous validons notre cadre par une expérience de terrain à grande échelle, en collaboration avec La Redoute. Enfin, une étude de cas montre la valeur ajoutée des meilleurs systèmes de recommandation. / Recommendation systems are a heavily investigated within machine learning literature, resulting in the creation of many algorithms. This doctoral dissertation goes beyond merely proposing new recommendation algorithms by leveraging state-of-the-art techniques and investigating the interaction of these techniques with different data sources having distinct characteristics. The focus lies upon the creation of frameworks guiding both marketers and academics in developing, evaluating, and testing recommendation systems in an e-commerce context. Concretely, this dissertation adds to literature in seven distinct ways. First, a framework evaluating collaborative filtering algorithms is designed and validated on real-life offline data sets of a large European e-tailer, La Redoute. Second, a five-step framework to develop and evaluate hybrid recommendation systems combing different data sources is proposed and validate on real-life historical data in Chapter II. Third, Chapter II introduces feature importance in the recommendation systems literature. Fourth, the best performing algorithms in the offline tests are leveraged to serve as basis for creating two revenue maximization recommendation systems in Chapter III. Fifth, a framework investigating three effects of (revenue maximization) recommendation systems on business metrics throughout the purchase funnel is proposed in Chapter III. Sixth, the framework is validated in a large-scale field experiment executed in collaboration with La Redoute. Finally, a business case shows the added value of the best performing recommendation systems.
|
2 |
Vers un système d'enseignement à distance efficaceKiared, Abou-Sofiane January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Collaborative filtering techniques for drug discoveryErhan, Dumitru January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Les systèmes de recommandation à base de confiance / Trust-based recommender systemsAlchiekh Haydar, Charif 03 September 2014 (has links)
La divergence comportementale des utilisateurs sur le web résulte un problème de fluctuation de performance chez les systèmes de recommandation (SR) qui exploitent ce comportement pour recommander aux utilisateurs des items qu’ils vont apprécier. Ce problème est observé dans l’approche de filtrage collaboratif (FC) qui exploite les notes attribuées par les utilisateurs aux items, et l’approche à base de confiance (SRC) qui exploite les notes de confiance que les utilisateurs attribuent l’un à l’autre. Nous proposons une approche hybride qui augmente le nombre d'utilisateurs bénéficiant de la recommandation, sans perte significative de précision. Par la suite, nous identifions plusieurs caractéristiques comportementales qui permettent de constituer un profil comportemental de l’utilisateur. Ce qui nous permet de classifier les utilisateurs selon leur comportement commun, et d’observer la performance de chaque approche par classe. Par la suite, nous focalisons sur les SRC. Le concept de confiance a été abordé dans plusieurs disciplines. Il n'existe pas véritablement de consensus sur sa définition. Cependant, toutes s'accordent sur son effet positif. La logique subjective (LS) fournit une plateforme flexible pour modéliser la confiance. Nous l’utilisons pour proposer et comparer trois modèles de confiance, dont l’objectif est de prédire à un utilisateur source s’il peut faire confiance à un utilisateur cible. La recommandation peut s’appuyer sur l’expérience personnelle de la source (modèle local), un système de bouche à oreille (modèle collectif), ou encore la réputation du cible (modèle global). Nous comparons ces trois modèles aux termes de la précision, la complexité, et la robustesse face aux attaques malicieuses / Recommender systems (RS) exploit users' behaviour to recommend to them items they would appreciate. Users Behavioral divergence on the web results in a problem of performance fluctuations to (RS). This problem is observed in the approach of collaborative filtering (CF), which exploites the ratings attributed by users to items, and in the trust-based approach (TRS), which exploites the trust relations between the users. We propose a hybrid approach that increases the number of users receiving recommendation, without significant loss of accuracy. Thereafter, we identify several behavioral characteristics that define a user profile. Then we classify users according to their common behavior, and observe the performance of the approaches by class. Thereafter, we focus on the TRS. The concept of trust has been discussed in several disciplines. There is no real consensus on its definition. However, all agree on its positive effect. Subjective logic (LS) provides a flexible platform for modeling trust. We use it to propose and compare three trust models, which aims to predict whether a user source can trust a target user. Trust may be based on the personal experience of the source (local model), or on a system of mouth (collective model), or the reputation of the target (global model). We compare these three models in terms of accuracy, complexity, and robustness against malicious attacks
|
5 |
Système de recommandations utilisant une combinaison de filtrage collaboratif et de segmentation pour des données implicitesRenaud-Deputter, Simon January 2013 (has links)
Avec la montée de la technologie et la facilité d'accès à Internet, les utilisateurs sont submergés par un large éventail de choix disponibles et une quantité considérable d'informations [6]. Il devient nécessaire d'avoir accès à des outils et des techniques efficaces pour filtrer les données et de les rendre utilisables pour des opérations de tous les jours. À cette fin, des systèmes de recommandations, qui ont fait l'objet de recherche active et de développement au cours des 15 dernières années, sont maintenant capables de fournir aux utilisateurs des choix [51] sur ce qu'ils aimeraient lire, acheter, regarder, manger, etc. La problématique étudiée dans ce mémoire est l'utilisation d'informations implicites pour construire des systèmes de recommandations en utilisant une approche par filtrage collaboratif. Beaucoup de travaux ont été faits sur l'utilisation de filtrage collaboratif à l'aide d'informations explicites telles que les cotes [48], [43], [19], [33]. Cependant, les techniques développées pour les systèmes de recommandations comprenant des articles sans informations explicites restent rudimentaires. Le plus grand défi vis-à-vis les systèmes de recommandations à informations implicites est l'absence de rétroaction de la part de l'utilisateur si nous n'utilisons pas un expert comme par exemple, un vendeur. En outre, comme il est mentionné dans [51], lorsque qu'un système avec cote existe, la proportion des éléments évalués est souvent inférieure à 1%. Par conséquent, même pour les systèmes de recommandations qui utilisent des informations explicites telles que les cotes, il est crucial d'avoir une méthode qui tire profit des informations implicites. Les progrès dans ce domaine sont timides depuis les dernières années. Il y a eu des études sur les recommandations par rapport aux médias sociaux en se basant sur des utilisateurs et des mots-clés [18], la modélisation probabiliste [30] et la modélisation sémantique basée sur la recommandation de nouvelles [29]. S'il est vrai que ces techniques utilisent des informations implicites, seuls quelques-uns [40], [23] abordent la question de recommander des produits d'un magasin sans l'utilisation d'informations explicites. Ces méthodes nécessitent généralement la disponibilité d'un expert afin de prendre la rétroaction d'un client ou le réglage de nombreux paramètres. Dans notre étude, nous avons réussi à élaborer un algorithme permettant de soumettre des recommandations personnelles à un utilisateur en utilisant seulement des informations implicites. Notre technique, lorsque comparée à un système semblable qui utiliserait des cotes comme informations explicites, génère de très bons résultats. De plus, lorsque la méthode développée est comparée à d'autres systèmes utilisant de l'information implicite, elle offr des résultats qui sont comparables et parfois supérieurs à ceux-ci.
|
6 |
Vers une approche comportementale de recommandation : apport de l'analyse des usages dans un processus de personnalisationEsslimani, Ilham 11 December 2010 (has links) (PDF)
Internet met à la disposition des utilisateurs une large variété d'items dont le volume est sans cesse croissant. Devant cette surcharge d'items, l'utilisateur peine à repérer les items qui correspondent à ses besoins. C'est dans ce contexte que les systèmes de recommandation se sont développés, dans la mesure où ils permettent de faciliter l'accès aux items susceptibles d'intéresser l'utilisateur. Néanmoins, malgré le succès des systèmes de recommandation, certaines questions de recherche restent soulevées telles que : le manque de données, l'identification de voisins fiables, la précision des recommandations et la recommandation de la nouveauté. En vue de répondre à ces questions, nous avons proposé à travers cette thèse une nouvelle approche de recommandation inspirée du web usage mining et du filtrage collaboratif. Cette approche repose sur l'observation du comportement de l'utilisateur et sur l'analyse de ses usages en vue de générer des recommandations. En outre, nous nous sommes inspirés des techniques utilisées dans le domaine de l'analyse des réseaux sociaux afin de prédire les liens à travers un réseau d'utilisateurs construit sur la base des similarités de comportement. L'objectif est de pallier le manque de données et d'améliorer l'identification de voisins fiables. De plus, dans la perspective d'atténuer le problème de démarrage à froid (concernant les nouveaux items), nous avons proposé une approche de recommandation qui repose sur la détection de leaders pour la recommandation de la nouveauté.
|
7 |
C.A.M.E.L.E.O. : a cultural adaptation methodology for E-learning environment optimizationRazaki, Ryad Adebola January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
8 |
DIA : un système de recommandation de livres dans un contexte pédagogiqueYammine, Kamal January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
9 |
HELP : localisation et recommandation d'experts pour le développement d'un système d'aide collaborativeSaleman, Anita January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
10 |
UMAKE : adaptation et recommandation d'outils d'aide d'un quiz pour l'auto-évaluationMabrouk, Moez January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.083 seconds