• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 8
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de noyaux de semigroupe pour objets structurés dans le cadre de l'apprentissage statistique

Cuturi, Marco 17 November 2005 (has links) (PDF)
Les méthodes à noyaux désignent une famille récente d'outils d'analyse de données, pouvant être utilisés dans une grande variété de tâches classiques comme la classification ou la régression. Ces outils s'appuient principalement sur le choix a priori d'une fonction de similarité entre paires d'objets traités, communément appelée "noyau'' en apprentissage statistique et analyse fonctionnelle. Ces méthodes ont récemment gagné en popularité auprès des praticiens par leur simplicité d'utilisation et leur performance. Le choix d'un noyau adapté à la tâche traitée demeure néanmoins un problème épineux dans la pratique, et nous proposons dans cette thèse plusieurs noyaux génériques pour manipuler des objets structurés, tels que les séquences, les graphes ou les images. L'essentiel de notre contribution repose sur la proposition et l'étude de différents noyaux pour nuages de points ou histogrammes, et plus généralement de noyaux sur mesures positives. Ces approches sont principalement axées sur l'utilisation de propriétés algébriques des ensembles contenant les objets considérés, et nous faisons ainsi appel pour une large part à la théorie des fonctions harmoniques sur semigroupes. Nous utilisons également la théorie des espaces de Hilbert à noyau reproduisant dans lesquels sont plongées ces mesures, des éléments d'analyse convexe ainsi que plusieurs descripteurs de ces mesures utilisés en statistiques ou en théorie de l'information, comme leur variance ou leur entropie. En considérant tout objet structuré comme un ensemble de composants, à l'image d'une séquence transformée en un ensemble de sous-séquences ou d'images en ensembles de pixels, nous utilisons ces noyaux sur des données issues principalement de la bioinformatique et de l'analyse d'images, en les couplant notamment avec des méthodes discriminantes comme les machines à vecteurs de support. Nous terminons ce mémoire sur une extension de ce cadre, en considérons non plus chaque objet comme un seul nuage de point, mais plutôt comme une suite de nuages emboîtés selon un ensemble d'évènements hierarchisés, et aboutissons à travers cette approche à une famille de noyaux de multirésolution sur objets structurés.
2

Collaborative filtering techniques for drug discovery

Erhan, Dumitru January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Méthodes à noyaux appliquées à la gestion de portefeuille

Dorion, Christian January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Fonctions noyaux pour molécules et leur application au criblage virtuel par machines à vecteurs de support

Mahé, Pierre 11 1900 (has links) (PDF)
La recherche thérapeutique a de plus en plus recours à des techniques de modélisation, dites de criblage virtuel, visant à corréler la structure d'une molécule avec ses propriétés biologiques. En particulier, l'utilisation de modèles prédictifs quantifiant la toxicité d'une molécule ou son activité vis à vis d'une cible thérapeutique, permet de réduire de manière considérable le temps et les coûts nécessaires à la mise au point de nouveaux médicaments. Nous nous proposons d'aborder ce problème dans le cadre des méthodes à noyaux, qui permettent de construire de tels modèles de manière efficace dès lors que l'on dispose d'une fonction noyau mesurant la similarité des objets que l'on considère. Plus particulièrement, l'objet de cette thèse est de définir de telles fonctions noyaux entre structures bi- et tri-dimensionnelles de molécules. D'un point de vue méthodologique, ce problème se traduit respectivement comme celui de comparer des graphes représentant les liaisons covalentes des molécules, ou des ensembles d'atomes dans l'espace. Plusieurs approches sont envisagées sur la base de l'extraction et la comparaison de divers motifs structuraux qui permettent d'encoder les groupes fonctionnels des molécules à différents niveaux de résolution. Les validations expérimentales suggèrent que cette méthodologie est une alternative prometteuse aux approches classiques en criblage virtuel.
5

On Metric and Statistical Properties of Topological Descriptors for geometric Data / Sur les propriétés métriques et statistiques des descripteurs topologiques pour les données géométriques

Carriere, Mathieu 21 November 2017 (has links)
Dans le cadre de l'apprentissage automatique, l'utilisation de représentations alternatives, ou descripteurs, pour les données est un problème fondamental permettant d'améliorer sensiblement les résultats des algorithmes. Parmi eux, les descripteurs topologiques calculent et encodent l'information de nature topologique contenue dans les données géométriques. Ils ont pour avantage de bénéficier de nombreuses bonnes propriétés issues de la topologie, et désirables en pratique, comme par exemple leur invariance aux déformations continues des données. En revanche, la structure et les opérations nécessaires à de nombreuses méthodes d'apprentissage, comme les moyennes ou les produits scalaires, sont souvent absents de l'espace de ces descripteurs. Dans cette thèse, nous étudions en détail les propriétés métriques et statistiques des descripteurs topologiques les plus fréquents, à savoir les diagrammes de persistance et Mapper. En particulier, nous montrons que le Mapper, qui est empiriquement un descripteur instable, peut être stabilisé avec une métrique appropriée, que l'on utilise ensuite pour calculer des régions de confiance et pour régler automatiquement ses paramètres. En ce qui concerne les diagrammes de persistance, nous montrons que des produits scalaires peuvent être utilisés via des méthodes à noyaux, en définissant deux noyaux, ou plongements, dans des espaces de Hilbert en dimension finie et infinie. / In the context of supervised Machine Learning, finding alternate representations, or descriptors, for data is of primary interest since it can greatly enhance the performance of algorithms. Among them, topological descriptors focus on and encode the topological information contained in geometric data. One advantage of using these descriptors is that they enjoy many good and desireable properties, due to their topological nature. For instance, they are invariant to continuous deformations of data. However, the main drawback of these descriptors is that they often lack the structure and operations required by most Machine Learning algorithms, such as a means or scalar products. In this thesis, we study the metric and statistical properties of the most common topological descriptors, the persistence diagrams and the Mappers. In particular, we show that the Mapper, which is empirically instable, can be stabilized with an appropriate metric, that we use later on to conpute confidence regions and automatic tuning of its parameters. Concerning persistence diagrams, we show that scalar products can be defined with kernel methods by defining two kernels, or embeddings, into finite and infinite dimensional Hilbert spaces.
6

Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications

Vazquez, Emmanuel 12 May 2005 (has links) (PDF)
Les méthodes de prédiction linéaire de processus aléatoires, ou krigeage, et les méthodes de régression régularisée par une norme d'espace hilbertien à noyau reproduisant (splines, approximation par fonctions de base radiales, régression à vecteurs de support, etc.) constituent deux approches fondamentales de modélisation comportementale de systèmes non-linéaires. Les liens mathématiques entre ces deux approches ont été mentionnés à plusieurs reprises dans le passé. Fort peu exploités, ces liens n'en restent pas moins fondamentaux puisqu'ils permettent par exemple de comprendre comment formuler le problème de régression régularisée pour l'approximation de fonctions à valeurs vectorielles (cas des systèmes multivariables dits MIMO). Dans les deux approches, le choix du noyau est essentiel car il conditionne la qualité des modèles. Les principaux résultats théoriques sont issus de travaux en statistiques. Bien que de type asymptotique, ils ont des conséquences pratiques importantes rappelées et illustrées dans cette étude. Les noyaux considérés habituellement forment une famille restreinte offrant relativement peu de souplesse. Ceci nous a suggéré de développer des méthodes assemblant un noyau à partir d'un grand nombre de noyaux élémentaires. Elles ont permis d'obtenir des résultats satisfaisants notamment sur un problème test classique issu du domaine de la prédiction de séries chronologiques. Enfin, ce travail s'attache à montrer comment utiliser les méthodes de régression à noyaux à travers la présentation de problèmes réels. Le choix de noyau est abordé en pratique. La prise en compte d'informations disponibles a priori par utilisation du krigeage intrinsèque (régression semi-régularisée) est illustrée. Finalement, des éléments de planification d'expériences sont discutés.
7

Apprentissage de modèles de mélange à large échelle par Sketching / Sketching for large-scale learning of mixture models

Keriven, Nicolas 12 October 2017 (has links)
Les bases de données modernes sont de très grande taille, parfois divisées et distribuées sur plusieurs lieux de stockage, ou encore sous forme de flux de données : ceci soulève de nouveaux défis majeurs pour les méthodes d’apprentissage statistique. Une des méthodes récentes capable de s’adapter à ces situations consiste à d’abord compresser les données en une structure appelée sketch linéaire, puis ensuite de réaliser la tâche d’apprentissage en utilisant uniquement ce sketch, ce qui est extrêmement rapide si celui-ci est de petite taille. Dans cette thèse, nous définissons une telle méthode pour estimer un modèle de mélange de distributions de probabilités à partir des données, en utilisant uniquement un sketch de celles-ci. Ce sketch est défini en s’inspirant de plusieurs notions venant du domaine des méthodes à noyaux : le plongement par noyau moyen et les approximations aléatoires de noyaux. Défini comme tel, le sketch correspond à des mesures linéaires de la distribution de probabilité sous-jacente aux données. Ainsi nous analysons le problème en utilisant des outils venant du domaine de l’acquisition comprimée, dans lequel un signal est mesuré aléatoirement sans perte d’information, sous certaines conditions. Nous étendons certains résultats de l’acquisition comprimée à la dimension infinie, donnons des conditions génériques garantissant le succès de notre méthode d’estimation de modèles de mélanges, et les appliquons à plusieurs problèmes, dont notamment celui d’estimer des mélanges de distributions stables multivariées, pour lequel il n’existait à ce jour aucun estimateur. Notre analyse est basée sur la construction d’opérateurs de sketch construits aléatoirement, qui satisfont une Propriété d’Isométrie Restreinte dans l’espace de Banach des mesures finies signées avec forte probabilité. Dans une second partie, nous introduisons un algorithme glouton capable heuristiquement d’estimer un modèle de mélange depuis un sketch linéaire. Cet algorithme est appliqué sur données simulées et réelles à trois problèmes : l’estimation de centres significatifs dans les données, pour lequel on constate que la méthode de sketch est significativement plus rapide qu’un algorithme de k-moyennes classique, l’estimation de mélanges de Gaussiennes, pour lequel elle est plus rapide qu’un algorithme d’Espérance-Maximisation, et enfin l’estimation de mélange de distributions stables multivariées, pour lequel il n’existait à ce jour, à notre connaissance, aucun algorithme capable de réaliser une telle tâche. / Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. Furthermore, new challenges arise from modern database architectures, such as the requirements for learning methods to be amenable to streaming, parallel and distributed computing. In this context, an increasingly popular approach is to first compress the database into a representation called a linear sketch, that satisfies all the mentioned requirements, then learn the desired information using only this sketch, which can be significantly faster than using the full data if the sketch is small. In this thesis, we introduce a generic methodology to fit a mixture of probability distributions on the data, using only a sketch of the database. The sketch is defined by combining two notions from the reproducing kernel literature, namely kernel mean embedding and Random Features expansions. It is seen to correspond to linear measurements of the underlying probability distribution of the data, and the estimation problem is thus analyzed under the lens of Compressive Sensing (CS), in which a (traditionally finite-dimensional) signal is randomly measured and recovered. We extend CS results to our infinite-dimensional framework, give generic conditions for successful estimation and apply them analysis to many problems, with a focus on mixture models estimation. We base our method on the construction of random sketching operators such that some Restricted Isometry Property (RIP) condition holds in the Banach space of finite signed measures with high probability. In a second part we introduce a flexible heuristic greedy algorithm to estimate mixture models from a sketch. We apply it on synthetic and real data on three problems: the estimation of centroids from a sketch, for which it is seen to be significantly faster than k-means, Gaussian Mixture Model estimation, for which it is more efficient than Expectation-Maximization, and the estimation of mixtures of multivariate stable distributions, for which, to our knowledge, it is the only algorithm capable of performing such a task.
8

Change-point detection and kernel methods / Détection de ruptures et méthodes à noyaux

Garreau, Damien 12 October 2017 (has links)
Dans cette thèse, nous nous intéressons à une méthode de détection des ruptures dans une suite d’observations appartenant à un ensemble muni d’un noyau semi-défini positif. Cette procédure est une version « à noyaux » d’une méthode des moindres carrés pénalisés. Notre principale contribution est de montrer que, pour tout noyau satisfaisant des hypothèses raisonnables, cette méthode fournit une segmentation proche de la véritable segmentation avec grande probabilité. Ce résultat est obtenu pour un noyau borné et une pénalité linéaire, ainsi qu’une autre pénalité venant de la sélection de modèles. Les preuves reposent sur un résultat de concentration pour des variables aléatoires bornées à valeurs dans un espace de Hilbert, et nous obtenons une version moins précise de ce résultat lorsque l’on supposeseulement que la variance des observations est finie. Dans un cadre asymptotique, nous retrouvons les taux minimax usuels en détection de ruptures lorsqu’aucune hypothèse n’est faite sur la taille des segments. Ces résultats théoriques sont confirmés par des simulations. Nous étudions également de manière détaillée les liens entre différentes notions de distances entre segmentations. En particulier, nous prouvons que toutes ces notions coïncident pour des segmentations suffisamment proches. D’un point de vue pratique, nous montrons que l’heuristique du « saut de dimension » pour choisir la constante de pénalisation est un choix raisonnable lorsque celle-ci est linéaire. Nous montrons également qu’une quantité clé dépendant du noyau et qui apparaît dans nos résultats théoriques influe sur les performances de cette méthode pour la détection d’une unique rupture. Dans un cadre paramétrique, et lorsque le noyau utilisé est invariant partranslation, il est possible de calculer cette quantité explicitement. Grâce à ces calculs, nouveaux pour plusieurs d’entre eux, nous sommes capable d’étudier précisément le comportement de la constante de pénalité maximale. Pour finir, nous traitons de l’heuristique de la médiane, un moyen courant de choisir la largeur de bande des noyaux à base de fonctions radiales. Dans un cadre asymptotique, nous montrons que l’heuristique de la médiane se comporte à la limite comme la médiane d’une distribution que nous décrivons complètement dans le cadre du test à deux échantillons à noyaux et de la détection de ruptures. Plus précisément, nous montrons que l’heuristique de la médiane est approximativement normale centrée en cette valeur. / In this thesis, we focus on a method for detecting abrupt changes in a sequence of independent observations belonging to an arbitrary set on which a positive semidefinite kernel is defined. That method, kernel changepoint detection, is a kernelized version of a penalized least-squares procedure. Our main contribution is to show that, for any kernel satisfying some reasonably mild hypotheses, this procedure outputs a segmentation close to the true segmentation with high probability. This result is obtained under a bounded assumption on the kernel for a linear penalty and for another penalty function, coming from model selection.The proofs rely on a concentration result for bounded random variables in Hilbert spaces and we prove a less powerful result under relaxed hypotheses—a finite variance assumption. In the asymptotic setting, we show that we recover the minimax rate for the change-point locations without additional hypothesis on the segment sizes. We provide empirical evidence supporting these claims. Another contribution of this thesis is the detailed presentation of the different notions of distances between segmentations. Additionally, we prove a result showing these different notions coincide for sufficiently close segmentations.From a practical point of view, we demonstrate how the so-called dimension jump heuristic can be a reasonable choice of penalty constant when using kernel changepoint detection with a linear penalty. We also show how a key quantity depending on the kernelthat appears in our theoretical results influences the performance of kernel change-point detection in the case of a single change-point. When the kernel is translationinvariant and parametric assumptions are made, it is possible to compute this quantity in closed-form. Thanks to these computations, some of them novel, we are able to study precisely the behavior of the maximal penalty constant. Finally, we study the median heuristic, a popular tool to set the bandwidth of radial basis function kernels. Fora large sample size, we show that it behaves approximately as the median of a distribution that we describe completely in the setting of kernel two-sample test and kernel change-point detection. More precisely, we show that the median heuristic is asymptotically normal around this value.
9

Modèles à noyaux à structure locale

Vincent, Pascal January 2003 (has links)
No description available.
10

Identification de systèmes dynamiques hybrides : géométrie, parcimonie et non-linéarités / Hybrid dynamical system identification : geometry, sparsity and nonlinearities

Le, Van Luong 04 October 2013 (has links)
En automatique, l'obtention d'un modèle du système est la pierre angulaire des procédures comme la synthèse d'une commande, la détection des défaillances, la prédiction... Cette thèse traite de l'identification d'une classe de systèmes complexes, les systèmes dynamiques hybrides. Ces systèmes impliquent l'interaction de comportements continus et discrets. Le but est de construire un modèle à partir de mesures expérimentales d'entrée et de sortie. Une nouvelle approche pour l'identification de systèmes hybrides linéaires basée sur les propriétés géométriques des systèmes hybrides dans l'espace des paramètres est proposée. Un nouvel algorithme est ensuite proposé pour le calcul de la solution la plus parcimonieuse (ou creuse) de systèmes d'équations linéaires sous-déterminés. Celui-ci permet d'améliorer une approche d'identification basée sur l'optimisation de la parcimonie du vecteur d'erreur. De plus, de nouvelles approches, basées sur des modèles à noyaux, sont proposées pour l'identification de systèmes hybrides non linéaires et de systèmes lisses par morceaux / In automatic control, obtaining a model is always the cornerstone of the synthesis procedures such as controller design, fault detection or prediction... This thesis deals with the identification of a class of complex systems, hybrid dynamical systems. These systems involve the interaction of continuous and discrete behaviors. The goal is to build a model from experimental measurements of the system inputs and outputs. A new approach for the identification of linear hybrid systems based on the geometric properties of hybrid systems in the parameter space is proposed. A new algorithm is then proposed to recover the sparsest solutions of underdetermined systems of linear equations. This allows us to improve an identification approach based on the error sparsification. In addition, new approaches based on kernel models are proposed for the identification of nonlinear hybrid systems and piecewise smooth systems

Page generated in 0.0467 seconds