• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto / Robust Kalman filters for discrete-time singular systems

Bianco, Aline Fernanda 29 June 2009 (has links)
Esta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati. / This thesis considers the optimal robust estimates problem for discrete-time singular dymanic systems. New recursive algorithms are developed for the Kalman filtered and predicted estimated recursions with the corresponding Riccati equations. The singular robust Kalman type filter and the corresponding recursive Riccati equation arer obtained in their most general formulation, extending the results presented in the literature. The quadratic functional developed to deduce this filter combines regularized least squares and penalty functions approaches. The system considered to obtain the estimates is singular, time varying with correlated noises and all parameter matrices of the underlying linear model are subject to uncertainties. The parametric uncertainty is assumed to be norm bounded. The properties of stability and convergence of the Kalman filter for nominal and uncertain system models are proved, where we show that steady state filter is stable and the Riccati recursion associated with this is a nondecreasing monotone sequence with upper bound.
2

Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto / Robust Kalman filters for discrete-time singular systems

Aline Fernanda Bianco 29 June 2009 (has links)
Esta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati. / This thesis considers the optimal robust estimates problem for discrete-time singular dymanic systems. New recursive algorithms are developed for the Kalman filtered and predicted estimated recursions with the corresponding Riccati equations. The singular robust Kalman type filter and the corresponding recursive Riccati equation arer obtained in their most general formulation, extending the results presented in the literature. The quadratic functional developed to deduce this filter combines regularized least squares and penalty functions approaches. The system considered to obtain the estimates is singular, time varying with correlated noises and all parameter matrices of the underlying linear model are subject to uncertainties. The parametric uncertainty is assumed to be norm bounded. The properties of stability and convergence of the Kalman filter for nominal and uncertain system models are proved, where we show that steady state filter is stable and the Riccati recursion associated with this is a nondecreasing monotone sequence with upper bound.

Page generated in 0.071 seconds