• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eletrônica embarcada para ensaios de posicionamento dinâmico em tanque de provas. / Embedded electronic for dynamic positioning tests in an experimental environment.

Lago, Glenan Assis do 14 August 2008 (has links)
No Brasil a exploração do petróleo está crescendo cada vez mais principalmente com as atividades offshore devido às constantes descobertas de novas jazidas em alto mar. Isto cria a necessidade de embarcações que garantam operações mais seguras o que pode ser obtido com aquelas dotadas de sistemas de posicionamento dinâmico. O projeto de um sistema de posicionamento dinâmico não é simples sob o ponto de vista de controle já que é um sistema não-linear multivariável sobreatuado; e não é barato devido aos elevados custos de implementação. Portanto, para se projetar adequadamente este tipo de sistema é imprescindível a elaboração de meios para ensaiar toda a estrutura real em desenvolvimento num tanque de provas utilizando modelos em escala. Neste trabalho é mostrado o projeto, construção e testes da eletrônica embarcada de um aparato experimental para ensaios de veículos oceânicos em tanque de provas, cujo projeto baseou-se em aspectos técnicos importantes para seu bom funcionamento como a descentralização dos processamentos necessários, a comunicação sem fio robusta com um console central responsável pelo processamento de todos os algoritmos do controlador superior e a preocupação com a compatibilidade eletromagnética do sistema. O console central consiste de uma interface de comunicação com o usuário e dos blocos de controle que são o filtro de Kalman, o controlador e o alocador de empuxos. Nos ensaios o desempenho da eletrônica é averiguado experimentalmente e os excelentes resultados obtidos mostram que o modelo responde de acordo com os comandos do controlador, principalmente com relação aos controles localizados para cada motor de propulsor contribuindo assim para o bom comportamento do conjunto. / In Brazil the exploration of oil is increasing mainly with the offshore activities due to the new found deposits. This situation requires more safety vessels which can be achieved using dynamic positioning systems. As a dynamic positioning system is a multivariable non linear and overactuated system, its design is not simple; and it is also not cheap due to high implementation costs. Therefore, the development of experimental environments to adequately study and design this type of system is essential. This work shows the embedded electronic project and assembly of an experimental setup in order to test floating vessel models. The project was developed based on important technical aspects to guarantee a good performance like processing decentralization, robust wireless communication with a central console responsible by the all control algorithms and the concern with electromagnetic compatibility of the system. The central console is composed by a human interface, control and Kalman filter structures and a thruster allocation algorithm. The performance of the electronic structure is verified experimentally during the tests and the excellent results show that the model works, in accordance to the controller commands, mainly related to local thruster control which contributes to the good system behavior
2

Eletrônica embarcada para ensaios de posicionamento dinâmico em tanque de provas. / Embedded electronic for dynamic positioning tests in an experimental environment.

Glenan Assis do Lago 14 August 2008 (has links)
No Brasil a exploração do petróleo está crescendo cada vez mais principalmente com as atividades offshore devido às constantes descobertas de novas jazidas em alto mar. Isto cria a necessidade de embarcações que garantam operações mais seguras o que pode ser obtido com aquelas dotadas de sistemas de posicionamento dinâmico. O projeto de um sistema de posicionamento dinâmico não é simples sob o ponto de vista de controle já que é um sistema não-linear multivariável sobreatuado; e não é barato devido aos elevados custos de implementação. Portanto, para se projetar adequadamente este tipo de sistema é imprescindível a elaboração de meios para ensaiar toda a estrutura real em desenvolvimento num tanque de provas utilizando modelos em escala. Neste trabalho é mostrado o projeto, construção e testes da eletrônica embarcada de um aparato experimental para ensaios de veículos oceânicos em tanque de provas, cujo projeto baseou-se em aspectos técnicos importantes para seu bom funcionamento como a descentralização dos processamentos necessários, a comunicação sem fio robusta com um console central responsável pelo processamento de todos os algoritmos do controlador superior e a preocupação com a compatibilidade eletromagnética do sistema. O console central consiste de uma interface de comunicação com o usuário e dos blocos de controle que são o filtro de Kalman, o controlador e o alocador de empuxos. Nos ensaios o desempenho da eletrônica é averiguado experimentalmente e os excelentes resultados obtidos mostram que o modelo responde de acordo com os comandos do controlador, principalmente com relação aos controles localizados para cada motor de propulsor contribuindo assim para o bom comportamento do conjunto. / In Brazil the exploration of oil is increasing mainly with the offshore activities due to the new found deposits. This situation requires more safety vessels which can be achieved using dynamic positioning systems. As a dynamic positioning system is a multivariable non linear and overactuated system, its design is not simple; and it is also not cheap due to high implementation costs. Therefore, the development of experimental environments to adequately study and design this type of system is essential. This work shows the embedded electronic project and assembly of an experimental setup in order to test floating vessel models. The project was developed based on important technical aspects to guarantee a good performance like processing decentralization, robust wireless communication with a central console responsible by the all control algorithms and the concern with electromagnetic compatibility of the system. The central console is composed by a human interface, control and Kalman filter structures and a thruster allocation algorithm. The performance of the electronic structure is verified experimentally during the tests and the excellent results show that the model works, in accordance to the controller commands, mainly related to local thruster control which contributes to the good system behavior
3

Identificação e controle de um veículo submersível autônomo sub-atuado. / Identification and control of a sub-actuated autonomous underwater vehicle.

Cutipa Luque, Juan Carlos 22 June 2012 (has links)
O presente trabalho apresenta a descrição de um modelo matemático completo em seis graus de liberdade para um Veículo Submersível Autônomo (VSA) sub-atuado. Desenvolveram-se métodos de identificação de sistemas para identificar o modelo não linear do veículo. A fim de evitar problemas de divergência na estimação de parâmetros hidrodinâmicos do modelo, usou-se o método de transformação paramétrica. Usou-se o filtro estendido de Kalman como estratégia para o processo de estimação de parâmetros quando ruídos de natureza gaussiana estavam presentes no modelo e nas medidas. Com o objetivo de estimar um maior número de parâmetros de uma só vez, empregou-se o método de máxima verossimilhança. Os experimentos mostraram que o filtro de Kalman responde bem à estimação de parâmetros específicos, porém, divergiu facilmente à estimação de múltiplos parâmetros. Uma alternativa que apresentou melhor desempenho foi o método de máxima verossimilhança. Testaram-se manobras circulares e de zig-zags para a obtenção de dados do veículo. Para os ensaios experimentais, utilizou-se o VSA sub-atuado do Laboratório de Veículos Não Tripulados (LVNT) do Departamento de Engenharia Mecatrônica da Escola Politécnica da Universidade de São Paulo. Validou-se o modelo identificado mediante o simulador do veículo. Numa segunda etapa, desenvolveram-se controladores H¥ capazes de controlar a dinâmica do VSA em seus seis graus de liberdade. Projetaram-se controladores SISO (uma entrada e uma saída) e MIMO (múltiplas entradas e múltiplas saídas) com o fim de avaliar o acoplamento dinâmico do sistema. Projetaram-se controladores centralizados robustos para garantir as condições de operação num ambiente marinho e em condições de laboratório próximas às de uma aplicação real. As leis de controle são baseadas na técnica de sensibilidade mista H¥ que garantem condições de robustez do sistema de controle, tanto no desempenho quanto na estabilidade. Uma estrutura de controle de dois graus de liberdade (2GL) produziu melhores propriedades de desempenho comparada com a estrutura do controlador de um grau de liberdade. Compararam-se as respostas dos controladores descentralizados SISO e os controladores centralizados. O controlador 2GL garantiu as especificações do projeto, inclusive aquelas definidas no domínio do tempo. Um controlador central pode controlar o veículo na realização de manobras complexas em três dimensões que emulem a inspeção ou monitoramento de sistemas offshores ou outras tarefas comuns na exploração submarinha. O trabalho apresenta também a integração dos algoritmos de controle com o sistema de tempo real embarcado, os sensores inerciais de navegação, os motores elétricos para os atuadores lemes e o propulsor, o banco de baterias e o processador central ARM7 de 32 bits de ponto fixo. Traduziram-se os algoritmos de controle de ordem elevada para a aritmética de ponto fixo produzindo a execução rápida e, no possível, evitando a ocorrência de transbordamento de dados. / This work presents a full six degrees-of-freedom mathematical model description of a subactuated Autonomous Underwater Vehicle (AUV). The work developed methods of System Identification for identifying the nonlinear model of the vehicle. In order to avoid divergence problems in the process of hydrodynamic, it used the parametric transformation technique. It used the extended Kalman filter to estimate the model parameters subject to Gaussian noise, in the process and in the measurements. In order to tackle the problem of multiple parameter estimation at once, the work used the maximum likelihood approach. The experimental results showed that the Kalman filter approach is better when the aim is to estimate a specific parameter, however, it diverges easily when the aim is to estimate multiple parameters. The maximum likelihood technique showed better response to estimate multiple parameters of the model. Zig-zag and circular standard maneuvers were tested with the identification algorithms. For experimental tests, an AUV, namely Pirajuba and constructed by the Unmanned Vehicle Laboratory (LVNT), were used. Results were also assessed using an AUV six degrees of freedom simulator. In a second stage, the work developed H¥ controllers to manoeuvre the vehicle in six-degrees-of-freedom. Decoupled SISO (single input and single output variables) and MIMO (multiple input and multiple output variables) controllers were synthesized in order to validate the coupling dynamics of the AUV. Moreover, centralized robust controllers were developed to control the vehicle in the sea and in test tanks with extreme conditions close to the ocean environmental. The control techniques were based in the H¥ mixed sensitivity approach which guarantees robust performance and stability of the sub-actuated system. A structure of two-degrees-of-freedom (2GL) controller presented better performance compared with the classic single H¥ controller of one degree of freedom structure. A comparison between responses was used to validate the decoupling and centralized controllers. The 2GL controller has good performance specifications despite these defined in the time domain. A central controller can control the AUV in complex maritime task that require complex and three-dimensional manoeuvres. The work deals also with the implementation issues coding these advanced control algorithms into the real time embedded system including inertial sensors, electric motors for the propeller and actuator surfaces, battery banks, and the unit central process ARM7 of 32 bits of fixed point. The control algorithms were translated from floating point to fixed point arithmetic avoiding data overflow, seeking simplicity and fast task execution.
4

Identificação e controle de um veículo submersível autônomo sub-atuado. / Identification and control of a sub-actuated autonomous underwater vehicle.

Juan Carlos Cutipa Luque 22 June 2012 (has links)
O presente trabalho apresenta a descrição de um modelo matemático completo em seis graus de liberdade para um Veículo Submersível Autônomo (VSA) sub-atuado. Desenvolveram-se métodos de identificação de sistemas para identificar o modelo não linear do veículo. A fim de evitar problemas de divergência na estimação de parâmetros hidrodinâmicos do modelo, usou-se o método de transformação paramétrica. Usou-se o filtro estendido de Kalman como estratégia para o processo de estimação de parâmetros quando ruídos de natureza gaussiana estavam presentes no modelo e nas medidas. Com o objetivo de estimar um maior número de parâmetros de uma só vez, empregou-se o método de máxima verossimilhança. Os experimentos mostraram que o filtro de Kalman responde bem à estimação de parâmetros específicos, porém, divergiu facilmente à estimação de múltiplos parâmetros. Uma alternativa que apresentou melhor desempenho foi o método de máxima verossimilhança. Testaram-se manobras circulares e de zig-zags para a obtenção de dados do veículo. Para os ensaios experimentais, utilizou-se o VSA sub-atuado do Laboratório de Veículos Não Tripulados (LVNT) do Departamento de Engenharia Mecatrônica da Escola Politécnica da Universidade de São Paulo. Validou-se o modelo identificado mediante o simulador do veículo. Numa segunda etapa, desenvolveram-se controladores H¥ capazes de controlar a dinâmica do VSA em seus seis graus de liberdade. Projetaram-se controladores SISO (uma entrada e uma saída) e MIMO (múltiplas entradas e múltiplas saídas) com o fim de avaliar o acoplamento dinâmico do sistema. Projetaram-se controladores centralizados robustos para garantir as condições de operação num ambiente marinho e em condições de laboratório próximas às de uma aplicação real. As leis de controle são baseadas na técnica de sensibilidade mista H¥ que garantem condições de robustez do sistema de controle, tanto no desempenho quanto na estabilidade. Uma estrutura de controle de dois graus de liberdade (2GL) produziu melhores propriedades de desempenho comparada com a estrutura do controlador de um grau de liberdade. Compararam-se as respostas dos controladores descentralizados SISO e os controladores centralizados. O controlador 2GL garantiu as especificações do projeto, inclusive aquelas definidas no domínio do tempo. Um controlador central pode controlar o veículo na realização de manobras complexas em três dimensões que emulem a inspeção ou monitoramento de sistemas offshores ou outras tarefas comuns na exploração submarinha. O trabalho apresenta também a integração dos algoritmos de controle com o sistema de tempo real embarcado, os sensores inerciais de navegação, os motores elétricos para os atuadores lemes e o propulsor, o banco de baterias e o processador central ARM7 de 32 bits de ponto fixo. Traduziram-se os algoritmos de controle de ordem elevada para a aritmética de ponto fixo produzindo a execução rápida e, no possível, evitando a ocorrência de transbordamento de dados. / This work presents a full six degrees-of-freedom mathematical model description of a subactuated Autonomous Underwater Vehicle (AUV). The work developed methods of System Identification for identifying the nonlinear model of the vehicle. In order to avoid divergence problems in the process of hydrodynamic, it used the parametric transformation technique. It used the extended Kalman filter to estimate the model parameters subject to Gaussian noise, in the process and in the measurements. In order to tackle the problem of multiple parameter estimation at once, the work used the maximum likelihood approach. The experimental results showed that the Kalman filter approach is better when the aim is to estimate a specific parameter, however, it diverges easily when the aim is to estimate multiple parameters. The maximum likelihood technique showed better response to estimate multiple parameters of the model. Zig-zag and circular standard maneuvers were tested with the identification algorithms. For experimental tests, an AUV, namely Pirajuba and constructed by the Unmanned Vehicle Laboratory (LVNT), were used. Results were also assessed using an AUV six degrees of freedom simulator. In a second stage, the work developed H¥ controllers to manoeuvre the vehicle in six-degrees-of-freedom. Decoupled SISO (single input and single output variables) and MIMO (multiple input and multiple output variables) controllers were synthesized in order to validate the coupling dynamics of the AUV. Moreover, centralized robust controllers were developed to control the vehicle in the sea and in test tanks with extreme conditions close to the ocean environmental. The control techniques were based in the H¥ mixed sensitivity approach which guarantees robust performance and stability of the sub-actuated system. A structure of two-degrees-of-freedom (2GL) controller presented better performance compared with the classic single H¥ controller of one degree of freedom structure. A comparison between responses was used to validate the decoupling and centralized controllers. The 2GL controller has good performance specifications despite these defined in the time domain. A central controller can control the AUV in complex maritime task that require complex and three-dimensional manoeuvres. The work deals also with the implementation issues coding these advanced control algorithms into the real time embedded system including inertial sensors, electric motors for the propeller and actuator surfaces, battery banks, and the unit central process ARM7 of 32 bits of fixed point. The control algorithms were translated from floating point to fixed point arithmetic avoiding data overflow, seeking simplicity and fast task execution.

Page generated in 0.0499 seconds