Spelling suggestions: "subject:"mimo"" "subject:"ximo""
1 |
Exploration et structuration intrinsèquement motivées d'espaces d'apprentissage sensorimoteur : contributions théoriques, plateforme et expérimentations / Intrinsically motivated exploration and structuring of sensorimotor learning spaces : theoretical contributions, experimental framework and resultsHervouet, Fabien 30 June 2014 (has links)
Dans cette thèse, nous nous intéressons à l'étude d'un modèle dédié à l'exploration et à la structuration d'espaces d'apprentissage sensorimoteur pour des systèmes artificiels. Nous appuyons notre démarche sur les notions de corps et de développement propre, auxquelles se greffe un troisième processus dit motivationnel. Cette forme de curiosité artificielle se base sur le progrès en compétence et repose ainsi sur les contraintes physiques naturelles directement issues de l'encorporation de l'agent. L'objectif de la motivation est de réguler un développement à long terme, dédié à l'apprentissage de nouvelles compétences non prévues par le concepteur. Nous inscrivons nos travaux dans la continuité de l'approche du babillage sensorimoteur dans l'espace des buts, qui consiste à déterminer un ensemble de techniques permettant à un agent de générer, selon une métrique d'intérêt, une configuration sensorielle qu'il va essayer d'atteindre par des actions motrices. Nos contributions viennent améliorer et complexifier un modèle motivationnel existant, en proposant des alternatives au processus de structuration de l'espace d'exploration. Certaines de ces propositions théoriques ont été validées expérimentalement grâce à la plateforme FIMO, que nous avons développée dans cette optique, et qui est disponible en ligne. / In this thesis, we study a motivational model for artificial systems, which aims at exploring and structuring sensorimotor learning spaces. Our approach relies on some essential notions, including the body, the development, and the motivation. This particular kind of artificial curiosity is based on the competence or learning progress, and thus depends on the physical natural constraints originating from the agent's embodiment. We follow the Goal-Babbling Exploration approach which consists in determining a set of techniques allowing an agent to self-generate goals, i.e. sensory configurations, and try to reach them using motor actions. Our contributions improve the SAGG-RIAC motivational model, by proposing alternative ways of structuring the exploration of the goal space. Some of our contributions have been experimentally validated within the FIMO framework we developed to this purpose.
|
Page generated in 0.0451 seconds