• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1644
  • 858
  • 358
  • 176
  • 173
  • 66
  • 52
  • 52
  • 52
  • 52
  • 52
  • 52
  • 50
  • 40
  • 28
  • Tagged with
  • 4070
  • 4070
  • 4070
  • 879
  • 877
  • 774
  • 713
  • 671
  • 654
  • 392
  • 385
  • 374
  • 360
  • 355
  • 304
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
891

A comparison of displacement and hybrid stress models for two dimensional finite element analysis

Tongtoe, Samruam January 1987 (has links)
An eight-node isoparametric hybrid stress element is developed for two dimensional plane stress and plane strain analyses. The assumed stresses are represented by 18 unknown parameters. An eight-node isoparametric displacement element is implemented in an existing finite element program [10]. Several example problems are solved to compare the results of the hybrid and the displacement elements. / Master of Science
892

OCTG Premium Threaded Connection 3D Parametric Finite Element Model

Ahsan, Nabeel 14 July 2016 (has links)
Full 360 degree 3D finite element models are the most complete representation of Oil Country Tubular Goods (OCTG) premium threaded connections. Full 3D models can represent helical threads and boundary conditions required to simulate make-up and service loading. A methodology is developed to create a 360 degree full 3D parametric finite element model with helical threads as an effective design and analysis tool. The approach is demonstrated with the creation of a metal-to-metal seal integral joint full 3D model with manufacturer supplied geometry. The premium connection is decomposed into smaller parts to generate parametric geometric features. A controlled parametric meshing scheme is developed to manage mesh density in contact regions to effectively represent the mechanics in regions of interest while minimizing total element count. The scripted parametric approach allows for efficient geometric and mesh updates. Several methods to reduce and manage model runtimes are presented. An elastic-plastic material model is created with material coupon tensile tests results. Digital Image Correlation (DIC) is used to measure full-field displacement and strain data on the surface of the box. Experimental set up and data processing procedures are discussed. Error metrics are developed to correlate the finite element model results with the DIC experimental data. The DIC make-up experimental results are used to reconcile the finite element model to develop a minimum error make-up model relative to the pin rotation. The friction coefficient is estimated and the make-up torque-turn behavior is verified. The calibrated 3D finite element model is validated with ISO_13769 load series B axial and internal pressure loading experimental DIC data. Metal-to-metal seal metrics of contact pressure and seal length are evaluated. / Master of Science
893

Multiscale Modeling of friction Mechanisms with Hybrid Methods

Wang, Xinfei 13 November 2014 (has links)
This thesis presents a simulation model of sliding process of friction, which combines Newtonian particle dynamics and finite element method to study friction mechanisms that bridging micro and macro scales. In the thesis, it first reviews the importance of studying pavement friction that is associated to safety of drivers, society economics and environmental impact. Then, the hybrid numerical methods of Newtonian particle dynamics and finite element method have been introduced, and the rules to bridge these two methods also have been discussed for solid material that assumes the forces and displacements are continuous at the interface of these two methods. The fundamental theories of friction mechanisms are built upon the surface roughness, adhesion and deformation at the contact between two surfaces. At last, the simulation model of sliding process is presented with the hybrid method, and its visualization and result analysis has been given. At the same time, this thesis also includes the procedures of establishing the simulation of the hybrid methods with C++ programming like the program framework, structure and the major pieces of the program. / Master of Science
894

Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation

Tehrani, Mehran 16 November 2012 (has links)
For many decades, fiber reinforced polymers (FRPs) have been extensively utilized in load-bearing structures. Their formability and superior in-plane mechanical properties have made them a viable replacement for conventional structural materials.  A major drawback to FRPs is their weak interlaminar properties (e.g., interlaminar fracture toughness). The need for lightweight multifunctional structures has become vital for many applications and hence alleviating the out-of-plane mechanical (i.e., quasi-static, vibration, and impact) and electrical properties of FRPs while retaining minimal weight is the subject of many ongoing studies. The primary objective of this dissertation is to investigate the fundamental processes for developing hybrid, multifunctional composites based on surface grown carbon nanotubes (CNTs) on carbon fibers' yarns. This study embraces the development of a novel low temperature synthesis technique to grow CNTs on virtually any substrate. The developed method graphitic structures by design (GSD) offers the opportunity to place CNTs in advantageous areas of the composite (e.g., at the ply interface) where conventional fiber architectures are inadequate. The relatively low temperature of the GSD (i.e. 550 C) suppresses the undesired damage to the substrate fibers. GSD carries the advantage of growing uniform and almost aligned CNTs at pre-designated locations and thus eliminates the agglomeration and dispersion problems associated with incorporating CNTs in polymeric composites. The temperature regime utilized in GSD is less than those utilized by other synthesis techniques such as catalytic chemical vapor deposition (CCVD) where growing CNTs requires temperature not less than 700 °C. It is of great importance to comprehend the reasons for and against using the methods involving mixing of the CNTs directly with the polymer matrix, to either fabricate nanocomposites or three-phase FRPs. Hence, chapter 2 is devoted to the characterization of CNTs-epoxy nanocomposites at different thermo-mechanical environments via the nanoindentation technique. Improvements in hardness and stiffness of the CNTs-reinforced epoxy are reported. Long duration (45 mins) nanocreep tests were conducted to study the viscoelastic behavior of the CNT-nanocomposites. Finally, the energy absorption of these nanocomposites is measured via novel nanoimpact testing module. Chapter 3 elucidates a study on the fabrication and characterization of a three phase CNT-epoxy system reinforced with woven carbon fibers. Tensile test, high velocity impact (~100 ms⁻¹), and dynamic mechanical analysis (DMA) were employed to examine the response of the hybrid composite and compare it with the reference CFRP with no CNTs. Quasi-static shear punch tests (QSSPTs) were also performed to determine the toughening and damage mechanisms of both the CNTs-modified and the reference CFRP composites during transverse impact loading. The synthesis of CNTs at 550 C via GSD is the focus of chapter 4. The GSD technique was adjusted to grow Palladium-catalyzed carbon filaments over carbon fibers. However, these filaments were revealed to be amorphous (turbostratic) carbon.  Plasma sputtering was utilized to sputter nickel nano-films on the surface of the substrate carbon fibers. These films were later fragmented into nano-sized nickel islands from which CNTs were grown utilizing the GSD technique.  The structure and morphology of the CNTs are evaluated and compared to CNTs grown via catalytic chemical vapor deposition (CCVD) over the same carbon fibers. Chapter 5 embodies the mechanical characterization of composites based on carbon fibers with various surface treatments including, but not limited to, surface grown CNTs. Fibers with and without sizing were subjected to different treatments such as  heat treatment similar to those encountered during the GSD process, growing CNTs on fabrics via GSD and CCVD techniques, sputtering of the fibers with a thin thermal shield film of SiO₂ prior to CNT growth, selective growth of CNTs following checkerboard patterns, etc. The effects of the various surface treatments (at the ply interfaces) on the on-axis and off-axis tensile properties of the corresponding composites are discussed in this chapter. In addition, the DMA and impact resistance of the hybrid CNT-CFRP composites are measured and compared to the values obtained for the reference CFRP samples. While the GSD grown CNTs accounted for only 0.05 wt% of the composites, the results of this chapter contrasts the advantages of the GSD technique over other methods that incorporate CNTs into a CFRP (i.e. direct growth via CCVD and mixing of CNTs with the matrix). Understanding the behavior of the thin CFRPs under impact loadings and the ability to model their response under ballistic impact is essential for designing CFRP structures.  A precise simulation of impact phenomenon should account for progressive damage and strain rate dependent behavior of the CFRPs. In chapter 6, a novel procedure to calibrate the state-of-the-art MAT162 material model of the LS-DYNA finite element simulation package is proposed. Quasi-static tensile, compression, through thickness tension, and in-plane Isopescu shear tests along with quasi-static shear punch tests (QSSPTs) employing flat cylindrical and spherical punches were performed on the composite samples to find 28 input parameters of MAT162. Finally, the capability of this material model to simulate a transverse ballistic impact of a spherical impactor with the thin 5-layers CFRP is demonstrated. It is hypothesized that the high electrical conductivities of CNTs will span the multifunctionality of the hybrid composites by facilitating electromagnetic interference (EMI) shielding. Chapter 6 is devoted to characterizing the electrical properties of hybrid CNT-fiberglass FRPs modified via GSD method. Using a slightly modified version of the GSD, denser and longer CNTs were grown on fiberglass fabrics.  The EMI shielding performance of the composites based on these fabrics was shown to be superior to that for reference composites based on fiberglass and epoxy. To better apprehend the effect of the surface grown CNTs on the electrical properties of the resulting composites, the electrical resistivities of the hybrid and the reference composites were measured along different directions and some interesting results are highlighted herein. The work outlined in this dissertation will enable significant advancement in protection methods against different hazards including impact, vibrations and EMI events. / Ph. D.
895

Geometrically nonlinear finite element analysis of a lattice dome

Huang, Chiung-Yu 08 September 2012 (has links)
The geometry and the finite element method modelling of a lattice dome is presented. Linear analyses and geometrically nonlinear analyses of the dome are performed. In addition, a buckling load prediction method is studied and extended to the multiple load distributions. The results obtained from linear analyses are checked against the requirements of NDS, National Design Standard. / Master of Science
896

Design and Optimization of Carbon-Fiber Chassis Panels

Anderson, Eric Carlton 05 June 2014 (has links)
Each year, the Virginia Tech (VT) Formula SAE (FSAE) team creates a high performance car to compete against 120 teams from around the world in a series of dynamic events evaluating acceleration, maneuverability, and handling. In an effort to improve upon the VT 2013 car, the torsional stiffness of the chassis was increased. Increasing the torsional stiffness of the chassis allows the suspension to be more precisely tuned, resulting in a better overall performance. An investigation was conducted into methods for improving the chassis stiffness, and it was determined that many state-of-the-art vehicles from go-karts to super cars incorporate strength-bearing, tailored advanced composite materials in their structure. Examples of components that use composites in vehicles include sandwich structures in load-bearing panels, layups in the skin of vehicles for aesthetic purposes and carbon-fiber frame tubes. The VT FSAE car already includes untailored carbon-fiber panels on the bottom and sides of the structure for packaging and aerodynamic purposes. By integrating and optimizing these carbon-fiber panels, the torsional stiffness and therefore overall performance of the structure may be increased. This thesis explores composite testing, optimization methods, experimental and computational analysis of the chassis, and results. The fiber orientation of the panels may be optimized because carbon-fiber composite materials are generally anisotropic. Therefore the composite materials can be tailored to maximize the stiffness, resulting in the optimum stiffness per added weight. A good measure for testing stiffness per added weight is through measuring natural frequencies because natural frequency is proportional to stiffness per unit mass. A computer program was developed in MATLAB to optimize the composite configuration, and uses an objective function involving the first three natural frequencies of the original steel space frame chassis and the first three natural frequencies of the steel chassis augmented with three composite panels. The composite material properties were determined using specimen tensile testing and checked with finite elements. The natural frequencies of the half-scale chassis were determined experimentally, compared to the simulated version, and varied by less than seven percent. The optimization of the full-scale model determined that eight layers of optimized, integrated carbon-fiber composite panels will increase the first, second, and third natural frequencies by sixteen, twenty-six, and six percent, respectively. Natural frequency increases of these amounts show that by using tailored, load-bearing composite panels in the structure, the torsional stiffness of the structure increases, resulting in easier suspension tuning and better performance at the VT FSAE competitions. / Master of Science
897

Finite element analysis of composite tubes with integral ends subjected to bending loads

Adams, Michael B. 29 July 2009 (has links)
An analytical investigation was performed to study the effect of applied bending loads on laminated composite tubes. Elasticity-based linear models were developed using finite element software to predict stresses within the individual plies of the tubes. The tubes under investigation were graphite/epoxy laminated composites with a stacking sequence of [0/-45/+45/90/90/+45/ -45/0] X 2 (Sixteen plies per tube). End pieces of isotropic titanium were integrally constructed with bonded interface joints. The material properties of the cylinder plies were orthotropic in the fiber direction. The analytical models were developed to simulate two concentric laminated composite cylinders with a gap of 0.158 in between them. In the first part of the analysis, the gap was left void to simulate a completely debonded condition between the cylinders and material that is sandwiched between them. The second part of the analysis incorporated isotropic tungsten material filling the gap along two-thirds of the length of the cylinders in a perfectly bonded condition. The final part of the analysiS included a local model incorporating a bond joint at the titanium/composite interface. Under applied bending loads, the analytical models predicted the highest stresses would occur in the 90° (axial) plies, the lowest stresses would occur in the 0° (hoop) plies, and median stresses would occur in the ±45° plies. The stresses in the cylinders when in a debonded condition were much higher than when the cylinders were perfectly bonded to the tungsten filler material. Stress concentrations occurred at the titanium/composite interfaces as well as at the tungsten/honeycomb interface. In the current investigation, the orthotropic plies showed no danger of failing under the applied bending load. The local model produced similar results as in the two global analyses. However, high shear stresses were apparent along the bond line. / Master of Science
898

Fatigue Crack Growth Analysis with Finite Element Methods and a Monte Carlo Simulation

Melson, Joshua Hiatt 04 June 2014 (has links)
Fatigue crack growth in engineered structures reduces the structures load carrying capacity and will eventually lead to failure. Cycles required to grow a crack from an initial length to the critical length is called the fatigue fracture life. In this thesis, five different methods for analyzing the fatigue fracture life of a center cracked plate were compared to experimental data previously collected by C.M. Hudson in a 1969 NASA report studying the R-ratio effects on crack growth in 7075-T6 aluminum alloy. The Paris, Walker, and Forman fatigue crack growth models were fit the experimental data. The Walker equation best fit the data since it incorporated R-ratio effects and had a similar Root Mean Square Error (RMSE) compared to the other models. There was insufficient data in the unstable region of crack growth to adequately fit the Forman equation. Analytical models were used as a baseline for all fatigue fracture life comparisons. Life estimates from AFGROW and finite elements with mid-side nodes moved to their quarter point location compared very with the analytical model with errors less than 3%. The Virtual Crack Closure Technique (VCCT) was selected as a method for crack propagation along a predefined path. Stress intensity factors (SIFs) for shorter crack lengths were found to be low, resulting in an overestimated life of about 8%. The eXtended Finite Element Method with Phantom Nodes (XFEM-PN) was used, allowing crack propagation along a solution dependent path, independent of the mesh. Low SIFs throughout growth resulted in life estimates 20% too large. All finite element analyses were performed in Abaqus 6-13.3. An integrated polynomial method was developed for calculating life based on Abaqus' results, leading to coarser meshes with answers closer to the analytical estimate. None of the five methods for estimating life compared well with the experimental data, with analytical errors on life ranging from 10-20%. These errors were attributed to the limited number of crack growth experiments run at each R-ratio, and the large variability typically seen in growth rates. Monte Carlo simulations were run to estimate the distribution on life. It was shown that material constants in the Walker model must be selected based on their interrelation with a multivariate normal probability density function. Both analytical and XFEM-PN simulations had similar coefficients of variation on life of approximately 3% with similar normal distributions. It was concluded that Abaqus' XFEM-PN is a reasonable means of estimating fatigue fracture life and its variation, and this method could be extended to other geometries and three-dimensional analyses. / Master of Science
899

Integrated structural analysis and design using 3-D finite elements

Madapur, Uma 22 June 2010 (has links)
When structural analysis is performed via iterative solution technique it is possible to integrate the analysis and design iterations in an integrated analysis and design procedure. The present work seeks to apply an integrated analysis and design approach due to Rizk to the problem of hole shape optimization in thick plates. The plates are modeled by three dimensional eight noded elements. An element by element (EBE) preconditioned conjugate gradient (PCG) method is used for the structural analysis, because this method is well suited for poorly banded three dimensional problems. The plates were optimized so as to minimize the stress concentration near the hole measured by the ratio of the Von Mises stress to the applied boundary stress. The analysis program was validated by comparison to a commercial finite-element program as well as photoelastically obtained stress concentrations. Similarly, the optimization procedure was checked against plates optimized by a photoelastic technique. Good agreement was observed. The integrated analysis and design approach tested here is based on partially converged solutions of the EBE-PCG iterative process. A study of the effect of the number of iterations on analysis and derivative accuracy was performed. Based on this analysis a choice was made for the number of iterations to be used in the integrated analysis and design procedure. It was found that the cost of the design could be significantly reduced with only minimal effects on the final shape and stress concentration factor. / Master of Science
900

Three-dimensional finite element modeling of steady state seepage using the computer program 'SEEPS3D'

Joglekar, Pramod N. 10 June 2009 (has links)
A three-dimensional finite element model for the analysis of steady state seepage has been presented in this study. The theory of unsaturated flow has been used in the analysis of steady state seepage. The model applies the invariant mesh procedure in the finite element analysis. Galerkin's method is used in the formulation of the finite element equations. The pre and the post processor developed in the generation and viewing of the finite element mesh and the free surface has also been discussed in this study. The study presents the comparison of results obtained from the three-dimensional model with a previously validated two-dimensional model. / Master of Science

Page generated in 0.3095 seconds