Spelling suggestions: "subject:"crinite element method."" "subject:"cofinite element method.""
931 |
A two-dimensional finite element mesh generator with automatic transitioning capabilityJara-Almonte, C. C. January 1982 (has links)
A simple, user friendly, mesh generator designed as a preprocessor for two-dimensional finite element codes is presented. The program generates both triangular and quadrilateral two-dimensional elements and has automatic transitioning capability. The required input is the definition of the boundary of the structure, a measure of the relative size of the mesh at the key geometry points, and loading information.
Both boundary and interior nodal points are generated. The user is not required to develop the overall node and element plan and is not limited to quadrilateral regions with equal number of nodes on opposing sides. The generated mesh density as controlled by the user will automatically transition from low to high density areas.
A bandwidth reduction routine is included to renumber the generated nodes most efficiently. An output file is created of node, element, and nodal load definitions which is organized for input to a finite element program. / Master of Science
|
932 |
A finite element study of bending stress variation in meshed spur gear pairsFeng, Ming-Fa January 1987 (has links)
A study of the bending stresses in a pair of meshed spur gears using the finite element method is presented. The models analyzed were in the shape of a circular gear with five teeth or a five-tooth rack. A unit torque (1 lbf-ft) was applied as the form of nodal forces on the nodes around the bore hole of the driver pinion. The nodes around the bore hole of the driven gear (or the nodes along the back of the driven rack) were fixed. In order to transmit the power from the driver pinion to the driven gear (or rack), the points in contact were made coincident.
Seven model groups with same diametral pitch (1.0), addendum (1.0 in.), dedendum (1.3 in.), pressure angle (20°) and hob tip radius (0.35 in.) but with varying numbers of teeth on the pinion and gear were analyzed to compute the tensile stress variation in the root fillet during the duration of contact. A model for predicting the tensile stress variation at the root fillet during the duration of contact has been created.
The results were compared with AGMA and other results with agreement for the peak within 3%. / M.S.
|
933 |
Mechanical Redesign and Fabrication of a 12 DOF Orthotic Lower Limb Exoskeleton and 6 Axis Force-Torque SensorGoodson, Caleb Benjamin 27 October 2020 (has links)
This thesis details several modifications to the mechanical design of the Orthotic Lower Limb Exoskeleton (OLL-E) that improve upon the functionality and manufacturability of parts and their assemblies. The changes made to these parts maintain or improve the factor of safety against yield and fatigue failure as compared to the original designs. Design changes are verified by FEA simulations and hand calculations. The changes included in this thesis also allowed parts that were previously difficult or impossible to manufacture using traditional methods to be made in house or outsourced to another machine shop. In addition to the mechanical design changes, this thesis also details the design and implementation of a six axis force-torque sensor built into the foot of OLL-E. The purpose of this sensor is to provide feedback to the central control system and allow OLL-E to be self-balancing. This foot sensor design is calibrated and initial results are discussed and shown to be favorable. / Master of Science / Recent developments in the fields of robotics and exoskeleton design have increased their feasibility for use in medical rehabilitation and mobility enhancement for persons with limited mobility. The Orthotic Lower Limb Exoskeleton (OLL-E) is an exoskeleton specifically designed for enhancing mobility by allowing users with lower limb disabilities such as spinal cord injuries or paraplegia to walk. The research detailed in this thesis explains the design and manufacturing processes used to make OLL-E as well as providing design details for a force sensor built into the exoskeleton foot. Before manufacturing could take place some parts needed to be redesigned and this thesis provides insight into the reasons for these changes. After the manufacturing and design process was completed the OLL-E was assembled and the project can now move forward with physical testing.
|
934 |
Seismic Slope Stability: A Comparison Study of Empirical Predictive Methods with the Finite Element MethodCopana Paucara, Julio 05 November 2020 (has links)
This study evaluates the seismically induced displacements of a slope using the Finite Element Method (FEM) in comparison to the results of twelve empirical predictive approaches. First, the existing methods to analyze the stability of slopes subjected to seismic loads are presented and their capabilities to predict the onset of failure and post-failure behavior are discussed. These methods include the pseudostatic method, the Newmark method, and stress-deformation numerical methods. Whereas the pseudostatic method defines a seismic coefficient for the analysis and provides a safety factor, the Newmark method incorporates a yield coefficient and the actual acceleration time history to estimate permanent displacements. Numerical methods incorporate advanced constitutive models to simulate the coupled stress-strain soil behavior, making the process computationally more costly. In this study, a model slope previously studied at laboratory scale is selected and scaled up to prototype dimensions. Then, the slope is subjected to 88 different input motions, and the seismic displacements obtained from the numerical and empirical approaches are compared statistically. From correlation analyses between seven ground motion parameters and the numerical results, new empirical predictive equations are developed for slope displacements. The results show that overall the FEM displacements are generally in agreement with the numerically developed methods by Fotopoulou and Pitilakis (2015) labelled "Method 2" and "Method 3", and the Newmark-type Makdisi and Seed (1978) and Bray and Travasarou (2007) methods for rigid slopes. Finally, functional forms for seismic slope displacement are proposed as a function of peak ground acceleration (PGA), Arias intensity (Ia), and yield acceleration ratio (Ay/PGA). These functions are expected to be valid for granular slopes such as earth dams, embankments, or landfills built on a rigid base and with low fundamental periods (Ts<0.2). / Master of Science / A landslide is a displacement on a sloped ground that can be triggered by earthquake shaking. Several authors have investigated the failure mechanisms that lead to landslide initiation and subsequent mass displacement and proposed methodologies to assess the stability of slopes subjected to seismic loads. The development of these methodologies has to rely on field data that in most of the cases are difficult to obtain because identifying the location of future earthquakes involves too many uncertainties to justify investments in field instrumentation (Kutter, 1995). Nevertheless, the use of scale models and numerical techniques have helped in the investigation of these geotechnical hazards and has led to development of equations that predict seismic displacements as function of different ground motion parameters. In this study, the capabilities and limitations of the most recognized approaches to assess seismic slope stability are reviewed and explained. In addition, a previous shaking-table model is used for reference and scaled up to realistic proportions to calculate its seismic displacement using different methods, including a Finite Element model in the commercial software Plaxis2D. These displacements are compared statistically and used to develop new predictive equations. This study is relevant to understand the capabilities of newer numerical approaches in comparison to classical empirical methods.
|
935 |
Design and development of structure sample using 2-hydroxyethyl methacrylate and methylmethactrylate copolymer for artificial hip replacementTekawade, Avinash 01 October 2001 (has links)
No description available.
|
936 |
A coupling protocol for hybrid boundary and finite element analysisYin, Qi 01 October 2001 (has links)
No description available.
|
937 |
Stress distribution on a glass substrate during robotic handlingBowen, Carlos 01 April 2000 (has links)
No description available.
|
938 |
Finite element analysis of an implanted human tibia under normal gait loadingIonescu, Irina M. 01 October 2003 (has links)
No description available.
|
939 |
Active vibration control using a rotary proof massLaney, Robb T. 01 January 1999 (has links)
No description available.
|
940 |
Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence modelKim, Seung J. January 1988 (has links)
The finite element method in the form of the weak Galerkin formulation with the penalty function method was applied to several problems of axisymmetric turbulent flows including flow through a sudden pipe expansion, the stern region flow of a slender body, and flows past ducted and nonducted propellers in action. The coupled set of the Reynolds time-averaged Navier-Stokes equations and two turbulence transport equations for the turbulent kinetic energy and its rate of dissipation was solved by L/U decomposition and successive substitution with relaxation. An existing finite element code was modified with a low Reynolds number form for an appropriate treatment of wall influences on turbulence transport, which produces a better solution and provides an easier imposition of boundary conditions by solving up to wall with no slip boundary conditions. The two-equation turbulence model with the wall modification was first successfully tested by solving the turbulent flow through a sudden pipe expansion. The numerical simulation of the stern region flow of a streamlined body resulted in an excellent agreement with the measured data in terms of the mean-flow and turbulence quantities. Turbulent shear flows past a propeller at the rear end of the same slender body, modeled by an actuator disk, were successfully solved at two rotational speeds, self-propelled and 100% over-thrusted, using the same two-equation model. And finally, comparisons of the wake behind a propeller were made for the self-propelled conditions of a ducted and nonducted propeller on the same streamlined body. / Ph. D.
|
Page generated in 0.1023 seconds