Spelling suggestions: "subject:"crinite elements simulations"" "subject:"cofinite elements simulations""
1 |
Simulation de la déformation des noyaux de fonderie durant la coulée / Modeling of the deformation of resin bonded foundry sand core during castingBargaoui, Hiba 31 January 2019 (has links)
Les cavités intérieures des culasses d'aluminium sont réalisées à l'aide de noyaux de sable, qui sont constitués d'un mélange de silice et d'une résine Polyuréthane. Ils sont placés dans le moule métallique juste avant la coulée. Durant celle-ci, ils subissent la pression métallo-statique et sont soumis à des températures élevées. Sous ces conditions extrêmes, avec l'apparition de parois de plus en plus fines et de formes plus complexes, les noyaux peuvent présenter des déformations qui induisent des défauts dimensionnels sur les pièces finales.Pour contrôler la déformation des noyaux, il faut d'abord disposer d'une caractérisation robuste de leur propriétés thermiques et mécaniques, qui puisse être utilisée dans des calculs de structures simulant le flux de métal liquide, la solidification et les champs thermiques. Cette approche n'est pas encore pratiquée de façon complète dans l'industrie. Une revue de la littérature confirme que cette connaissance n'est que très parcellaire pour le moment.Le travail a donc d'abord été concentré sur la caractérisation expérimentale du comportement thermomécanique et des propriétés thermophysiques des noyaux de fonderie et du liant résine.Ensuite, un modèle de comportement capable de prendre en compte la viscosité du matériau, son endommagement, et surtout son évolution en fonction du temps et de la température en raison de la dégradation thermique du liant résine a été développé.Une éprouvette technologique a finalement été conçue et un protocole expérimental a été mis en place pour mesurer la déformation d'un noyau durant la coulée et de valider numériquement le modèle de comportement sous des chargements thermiques et mécaniques complexes. / The inner cavities of aluminum cylinder heads are made using sand cores, which are made of silica sand and of a polyurethane resin binder. The cores are placed in the metallic mold just before casting. During this stage, the cores are submitted to the metallo-static pressure and high temperatures. Under these extreme loading conditions, with the development of thinner and thinner walls with complex designs, the cores exhibit significant deformation causing dimensional defects in the final cast.To control the deformation of the sand core, it is necessary to possess a robust characterization of their thermal and mechanical properties, that could be introduced in structural computations simulating the flow of the liquid metal, the solidification and the thermal fields. This approach is still not fully in use in the industry. A review of the literature confirms that this knowledge is incomplete for the moment.The work was therefore concentrated on the experimental characterization of the thermomechanical behavior and the thermophysical properties of the foundry cores and Polyurethane resin binder.Then, a behavior model capable of taking into account the viscosity of the material, damage development, and especially its evolution as a function of time and temperature because of the thermal degradation of the binder resin was developed.A technological specimen was finally designed and an experimental protocol has been established to measure the deformation of a core during casting and numerically validate the constitutive equations under complex thermal and mechanical loadings.
|
2 |
Réflexions sur la reconstruction prothétique de l’Articulation Temporo-Mandibulaire (ATM) à travers une étude biomécanique comparative entre sujets asymptomatique et pathologique / Considerations about Temporo-Mandibular Joint prosthetic reconstruction through a biomechanical comparative study between asymptomatic and pathological subjectsAlvarez Areiza, Diego 22 April 2014 (has links)
Cette thèse aborde une étude biomécanique de l’Articulation Temporo Mandibulaire (ATM), dont l’un des objectifs est la définition d’une approche complète, faisant appel à des outils modernes, permettant la conception d’une prothèse d’ATM personnalisée. Tout d’abord, nous avons conçu et réalisé un tribomètre reproduisant les conditions physiologiques de fonctionnement de l’ATM, afin d’étudier les interactions entre un matériau prothétique et de l’os porcin et de quantifier leurs usures respectives. La conception prothétique personnalisée passe par la réalisation d’un « état des lieux ». Nous avons donc défini un protocole de caractérisation non invasif de l’ATM. Il correspond à l’acquisition de sa géométrie actuelle et des mouvements élémentaires de la mandibule. Dans un deuxième temps, des simulations numériques en dynamique des corps rigides et/ou en éléments finis ont été réalisées pour accéder à des grandeurs mécaniques, telles que contraintes et déformations, nécessaires à la conception d’une prothèse. La totalité du protocole a été menée sur deux sujets d’étude : un sujet présentant une résorption condylienne et un sujet asymptomatique. Des modèles numériques personnalisés ont été construits pour chaque cas. Ces modèles nous ont permis d’étudier le fonctionnement articulaire de chaque individu. Nous avons effectué des comparaisons entre ces deux sujets et nous avons pu constater des différences notables concernant le fonctionnement articulaire. Il s’est avéré que les changements morphologiques occasionnés par la résorption osseuse ont des conséquences sur l’activité musculaire, ainsi que sur les efforts articulaires. Ce travail a permis d’enrichir les connaissances fondamentales par rapport au fonctionnement de l’ATM. Il a également permis de valider des outils d’évaluation de l’état fonctionnel de l’articulation. L’approche développée durant cette thèse est mise en pratique au sein de la société OBL, spécialisée dans la conception et la réalisation de prothèses maxillo-faciales sur mesure. Elle peut également être utilisée comme outil d’évaluation de solutions prothétiques existantes et à venir / This thesis deals with a biomechanical study of the Temporo-Mandibular Joint (TMJ); one of the objectives of this work is the definition of a complete approach, using modern tools, allowing the design of a personalized TMJ prosthesis. First of all, a tribometer reproducing the TMJ physiological conditions was designed and built, in order to study the interactions between porcine bone and a prosthetic material and to quantify their respective wears. Through this device, the relationships between the contact parameters and bone wear were determined. Personalized prosthetic design needs first to carry out “a state-of-the-art”. We defined a non invasive protocol for TMJ characterization. It corresponds to the acquisition of its current geometry and of the mandible elementary motions. In a second step, numerical simulations of rigid bodies and/or finite elements were achieved to obtain the mechanical quantities, such as stresses and strains, necessary for the prosthesis design. The entire protocol was conducted on two subjects: an asymptomatic one and a second one with condylar resorption. Personalized numerical models were built for each case. These models allowed us study the joint functioning of each subject. We made comparisons between these subjects and significant differences were found. It was proved that the changes produced by bone resorption have an impact on muscle activity, as well as contact forces in joints. This work allowed enhancing the fundamental knowledge regarding TMJ operating conditions. It also enabled to validate evaluation tools of the functional state of the joint. The approach developed during this thesis is applied by OBL society, specialized in the design of customed maxillofacial prostheses. The approach proposed in this work can also be used as an evaluation tool of existing prosthetic solutions, as well as future solutions
|
3 |
CRYSTAL PLASTICITY OF PENTAERYTHRITOL TETRANITRATE (PETN)Jennifer Oai Lai (17677422) 24 April 2024 (has links)
<p dir="ltr">We investigate the crystal plasticity and shock response of single crystal and polycrystalline pentaerythritol tetranitrate (PETN) using mesoscale finite element simulations. The model includes the Mie-Grüneisen Equation of State and a single crystal plasticity model. Simulations with single crystals with different orientations are tested using our plasticity model under shock compression to explore shear stress and slip. Parameters regarding the Mie-Grüneisen Equation of State are also verified in various orientations from 0.50 to 1.75 km/s. A polycrystalline PETN sample with varying grain sizes and orientations are subjected to shock loading with impact velocities ranging from 0.25 to 0.75 km/s. We study how differences in shock orientation affect slip and stress in PETN at different shock strengths.</p>
|
Page generated in 0.1285 seconds