• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 14
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 143
  • 143
  • 48
  • 41
  • 37
  • 17
  • 15
  • 15
  • 14
  • 12
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Construction of finite homomorphic images

Yoo, Jane 01 January 2007 (has links)
The purpose of this thesis is to construct finite groups as homomorphic images of progenitors.
72

Higher order commutators in the method of orbits

Unknown Date (has links)
Benson spaces of higher order are introduced extending the idea of N. Krugljak and M. Milman, A distance between orbits that controls commutator estimates and invertibilty of operators, Advances in Mathematics 182 (2004), 78-123. The concept of Benson shift operators is introduced and a class of spaces equipped with these operators is considered. Commutator theorems of higher order on orbit spaces generated by a single element are proved for this class. It is shown that these results apply to the complex method of interpolation and to the real method of interpolation for the case q=1. Two new characterizations are presented of the domain space of the "derivation" operator in the context of orbital methods. Comparisons to the work of others are made, especially the unifying paper of M. Cwikel, N. Kalton, M. Milman and R. Rochberg, A United Theory of Commutator Estimates for a Class of Interpolation Methods, Advances in Mathematics 169 2002, 241-312. / by Eva, Kasprikova / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
73

Tight Approximability Results for the Maximum Solution Equation Problem over Abelian Groups

Kuivinen, Fredrik January 2005 (has links)
<p>In the maximum solution equation problem a collection of equations are given over some algebraic structure. The objective is to find an assignment to the variables in the equations such that all equations are satisfied and the sum of the variables is maximised. We give tight approximability results for the maximum solution equation problem when the equations are given over finite abelian groups. We also prove that the weighted and unweighted versions of this problem have asymptotically equal approximability thresholds.</p><p>Furthermore, we show that the problem is equally hard to solve as the general problem even if each equation is restricted to contain at most three variables and solvable in polynomial time if the equations are restricted to contain at most two variables each. All of our results also hold for the generalised version of maximum solution equation where the elements of the group are mapped arbitrarily to non-negative integers in the objective function.</p>
74

Codes of designs and graphs from finite simple groups.

Rodrigues, Bernardo Gabriel. 10 February 2014 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2002.
75

Codes of designs and graphs from finite simple groups.

Rodrigues, Bernardo Gabriel. January 2002 (has links)
Discrete mathematics has had many applications in recent years and this is only one reason for its increasing dynamism. The study of finite structures is a broad area which has a unity not merely of description but also in practice, since many of the structures studied give results which can be applied to other, apparently dissimilar structures. Apart from the applications, which themselves generate problems, internally there are still many difficult and interesting problems in finite geometry and combinatorics. There are still many puzzling features about sub-structures of finite projective spaces, the minimum weight of the dual codes of polynomial codes, as well as about finite projective planes. Finite groups are an ever strong theme for several reasons. There is still much work to be done to give a clear geometric identification of the finite simple groups. There are also many problems in characterizing structures which either have a particular group acting on them or which have some degree of symmetry from a group action. Codes obtained from permutation representations of finite groups have been given particular attention in recent years. Given a representation of group elements of a group G by permutations we can work modulo 2 and obtain a representation of G on a vector space V over lF2 . The invariant subspaces (the subspaces of V taken into themselves by every group element) are then all the binary codes C for which G is a subgroup of Aut(C). Similar methods produce codes over arbitrary fields. Through a module-theoretic approach, and based on a study of monomial actions and projective representations, codes with given transitive permutation group were determined by various authors. Starting with well known simple groups and defining designs and codes through the primitive actions of the groups will give structures that have this group in their automorphism groups. For each of the primitive representations, we construct the permutation group and form the orbits of the stabilizer of a point. Taking these ideas further we have investigated the codes from the primitive permutation representations of the simple alternating and symplectic groups of odd characteristic in their natural rank-3 primitive actions. We have also investigated alternative ways of constructing these codes, and these have come about by noticing that the codes constructed from the primitive permutations of the groups could also be obtained from graphs. We achieved this by constructing codes from the span of adjacency matrices of graphs. In particular we have constructed codes from the triangular graphs and from the graphs on triples. The simple symplectic group PSp2m(q), where m is at least 2 and q is any prime power, acts as a primitive rank-3 group of degree q2m-1/q-1 on the points of the projective (2m-1)-space PG2m-1(IFq ). The codes obtained from the primitive rank-3 action of the simple projective symplectic groups PSp2m(Q), where Q= 2t with t an integer such that t ≥ 1, are the well known binary subcodes of the projective generalized Reed-Muller codes. However, by looking at the simple symplectic groups PSp2m(q), where q is a power of an odd prime and m ≥ 2, we observe that in their rank-3 action as primitive groups of degree q2m-1/q-1 these groups have 2-modular representations that give rise to self-orthogonal binary codes whose properties can be linked to those of the underlying geometry. We establish some properties of these codes, including bounds for the minimum weight and the nature of some classes of codewords. The knowledge of the structures of the automorphism groups has played a key role in the determination of explicit permutation decoding sets (PD-sets) for the binary codes obtained from the adjacency matrix of the triangular graph T(n) for n ≥ 5 and similarly from the adjacency matrices of the graphs on triples. The successful decoding came about by ordering the points in such a way that the nature of the information symbols was known and the action of the automorphism group apparent. Although the binary codes of the triangular graph T(n) were known, we have examined the codes and their duals further by looking at the question of minimum weight generators for the codes and for their duals. In this way we find bases of minimum weight codewords for such codes. We have also obtained explicit permutation-decoding sets for these codes. For a set Ω of size n and Ω{3} the set of subsets of Ω of size 3, we investigate the binary codes obtained from the adjacency matrix of each of the three graphs with vertex set Ω{3}1 with adjacency defined by two vertices as 3-sets being adjacent if they have zero, one or two elements in common, respectively. We show that permutation decoding can be used, by finding PD-sets, for some of the binary codes obtained from the adjacency matrix of the graphs on (n3) vertices, for n ≥ 7. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2002.
76

Racah algebra for SU(2) in a point group basis ; finite subgroup polynomial bases for SU(3)

Desmier, Paul Edmond. January 1982 (has links)
Integrity bases for tensors of type (GAMMA)(,r) whose components are polynomials in the components of tensors of type (GAMMA)(,5) ((GAMMA)(,6) for ('(d))O) are given explicitely for the double tetrahedral and octahedral point groups (('(d))T and ('(d))O), where the main axis of symmetry is trigonal. We formulate analytic basis states for the decomposition of SU(2) through the chain ('(d))T (R-HOOK) ('(d))C(,3) (R-HOOK) ('(d))C(,1) and use them to construct the Racah algebra. / A method is given for deriving branching rules, in the form of generating functions, for the decomposition of representations of SU(3) into representations of its finite subgroups. Interpreted in terms of an integrity basis, the generating functions define analytic polynomial basis states for SU(3) which respect the finite subgroup.
77

On O-basis groups and generalizations

Ervin, Jason January 2007 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2007. / Abstract. Includes bibliographic references (ℓ. 68)
78

Subgroups of the symmetric group of degree n containing an n-cycle /

Charlebois, Joanne January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 40-43). Also available in electronic format on the Internet.
79

Subsets of finite groups exhibiting additive regularity

Gutekunst, Todd M. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Robert Coulter, Dept. of Mathematical Sciences. Includes bibliographical references.
80

Centralizers of elements of prime order in locally finite simple groups

Seçkin, Elif. January 2008 (has links)
Thesis (Ph. D.)--Michigan State University. Dept. of Mathematics, 2008. / Title from PDF t.p. (viewed on July 24, 2009) Includes bibliographical references (p. 83-84). Also issued in print.

Page generated in 0.0306 seconds