• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 680
  • 173
  • 100
  • 28
  • 21
  • 14
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1446
  • 1446
  • 1446
  • 532
  • 239
  • 159
  • 155
  • 155
  • 136
  • 134
  • 132
  • 125
  • 120
  • 108
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Finite element analysis of doubler plate attachment details and load paths in continuity plates for steel moment frames

Donkada, Shravya 19 June 2012 (has links)
This thesis presents results of research aimed at developing an improved understanding of the behavior of column panel zones reinforced with doubler plates in seismic resistant steel moment frames. A primary goal of the research was to develop data to support the development of improved design guidelines for welding doubler plates to columns, with and without the presence of continuity plates. The research addressed several issues and questions related to welding and detailing of doubler plates. This included evaluation of the effects of welding the top and bottom of the doubler plate in addition to the vertical edges, the effects of extending the doubler plate beyond the panel zone, and the impact of welding a continuity plate to a doubler plate. These issues were investigated through detailed finite element models of a simplified representation of the panel zone region, subjected to monotonic loading. The results of the research suggest that, in general, there is little benefit in welding the top and bottom edges of a doubler plate if the vertical edges are welded, particularly in terms of overall panel zone strength and stiffness. However, the top and bottom welds provide some benefit in reducing stresses on the vertical welds. The results also suggest that extending the doubler plate above and below the panel zone has little benefit for heavy columns of shallow depth, such as the W14x398 considered in this analysis. However, extending the doubler plate did result in approximately a 10-percent increase in panel zone strength for deeper columns, such as the W40x264 considered in this analysis. Finally, the results showed that welding a continuity plate directly to a doubler plate had no adverse effects on the doubler plate in terms of increased forces or stresses. Interestingly, welding the continuity plate to the doubler plate simply changed the load path for transfer of load from the beam flange to the column web and doubler plate, but did not change the stresses in the doubler plate. Further research is needed to validate these findings for more accurate representations of the panel zone region of the column and for cyclic loading. / text
392

Estimation of beam prestress by deflection and strain measurements

An, JinWoo 29 October 2012 (has links)
Laboratory test of reinforced and prestressed concrete structures have been used widely to explore the behavior of reinforced and prestressed concrete components and structures; Such tests are often time-consuming and costly. However, numerical models have been shown to compare favorably with experiments. Thus, computations are viewed nowadays as efficient alternatives to tests, time-wise and cost-wise. In the research reported in this thesis, finite-element model were used in a study of pretressed structural components in order to correlate levels of pretension with deflection and strain measurements. The two main objectives were to develop a suitable finite element model of prestressed concrete beams and to forecast beam prestension on the basis of deformations resulting from specified simple load, e.g., a uniformly distributed transverse load. A commercial finite-element analysis package (ANSYS 12) was used to set up, use and evaluate the computational model. Furthermore, a finite-difference model was employed in order to ascertain the validity of ANSYS results by comparison with engineering beam theory taking into account the applied pretension. This study demonstrates the potential usefulness of deflection and strain measurements as indicators of the pretension applied or remaining in prestressed concrete beams. / text
393

Finite element analysis of wood shoring towers used in Urban Search and Rescue

Blair, Robert Stevenson 04 March 2013 (has links)
This thesis focuses on the finite element modeling and analysis of wood shoring towers used by Urban Search and Rescue (US&R) teams during emergency response situations. These shores are constructed on site to provide temporary stabilization to a damaged structure. A high demand exists for experimental testing of the performance of these shores under non-ideal loading conditions, and for possible design modifications that could improve their overall behavior. To respond to this need, a total of thirteen vertical shores of the type laced post (LP) and plywood laced post (PLP) were constructed and tested at the Ferguson Structural Engineering Laboratory (FSEL) in Austin, Texas. The tests conducted on these shores aimed to investigate their performance under purely vertical load as well as various combinations of vertical and lateral loads. Finite element models for eight of the shores tested at FSEL were built and analyzed in Abaqus to compare the computed results with the actual linear elastic response of the shores. Material properties for the posts in each shore were obtained through further material testing at the conclusion of each shore test. Shore members were assumed to be isotropic. Solid elements were used to model each member, and Cartesian connector elements with a predefined nonlinear stiffness were used to model each nail. In general, the vertical load-displacement response computed from Abaqus exhibited good agreement with the laboratory results for the linear elastic range. The same general modeling scheme was then used to make design changes to the original shores based on observations gained during testing as well as modeling. Each design change was modeled, analyzed, and then compared with the computed results from the original shore design as well as the other design changes. The basis for evaluating the effectiveness of a given shore design involved comparing the bending moment diagrams for each post and the maximum first story nail slips (connector displacements). Recommendations were made for improved shore designs to be verified by experimental testing. / text
394

Performance of suction caissons with a small aspect ratio

Chen, Ching-Hsiang, active 2013 10 February 2014 (has links)
Suction caissons with a smaller aspect (length to diameter) ratio are increasingly used for supporting offshore structures, such as wind turbines and oil and gas production facilities. The design of these stubbier foundations is usually governed by lateral loads from wind, waves, or currents. It is desired to have more physical understanding of the behavior of less slender suction caissons under cyclic lateral loading condition and to have robust design tools for analyzing these laterally loaded caissons. In this study, one-g model tests with 1:25 and 1:50 suction can foundation scale models with an aspect ratio of one are conducted in five different soil profiles: normally consolidated clay, overconsolidated clay, loose siliceous sand, cemented siliceous sand, and cemented calcareous sand. This test program involves monitoring settlements, lateral displacements (walking), tilt, lateral load and pore water pressures in the suction can during two-way cyclic lateral loading at one, three and five degrees of rotation. The model foundations are monitored during installation, axial load tests, and pullout tests. In one and two-degree (±0.5 and ±1 degree) rotation tests, the suction can does not have significant walking or settlement in all the five soil profiles after 1000 load cycles. However, more significant walking or settlement may occur at extreme conditions such as the 5-degree (±2.5 degrees) rotation tests. Gaps between the foundation wall and the soil may also form in these extreme conditions in overconsolidated clay, cemented siliceous sand, and cemented calcareous sand. Plastic limit analysis, finite element analysis, and finite difference analysis are used to evaluate the laterally loaded suction can in clay. The plastic limit analysis originally developed for more slender suction caissons appears to predict a lateral capacity close to the measured short-term static capacity of the caisson with an aspect ratio of one when undisturbed undrained shear strength of soil is used. However, this plastic limit model underestimates the long-term cyclic lateral load capacity of the caisson when the remolded undrained shear strength was used. The finite element model developed in this study can simulate the development and effect of a gap between the foundation and surrounding soil as observed in the experiments in overconsolidated clay. The lateral load-displacement response predicted by this finite element model matches well with the experimental data. Finally, finite difference analysis for a rigid caisson with lateral and rotational springs was developed by fitting the lateral load-displacement response of the suction can in clay. The calibrated p-y curves for rigid caisson are significantly stiffer and have higher ultimate resistance than the p-y curves recommended by API which is consistent with other studies. This finite difference model provides an efficient approach to analyze a laterally loaded caisson with a small aspect ratio in clay. / text
395

Numerical and Experimental Investigations of the Machinability of Ti6AI4V : Energy Efficiency and Sustainable Cooling/ Lubrication Strategies

Pervaiz, Salman January 2015 (has links)
Titanium alloys are widely utilized in the aerospace, biomedical,marine, petro-chemical and other demanding industries due to theirdurability, high fatigue resistance and ability to sustain elevateoperating temperature. As titanium alloys are difficult to machine, dueto which machining of these alloys ends up with higher environmentalburden. The industry is now embracing the sustainable philosophy inorder to reduce their carbon footprint. This means that the bestsustainable practices have to be used in machining of titanium alloys aswell as in an effort to reduce the carbon footprint and greenhouse gas(GHG) emissions.In this thesis, a better understanding towards the feasibility of shiftingfrom conventional (dry and flood) cooling techniques to the vegetableoil based minimum quantity cooling lubrication (MQCL) wasestablished. Machining performance of MQCL cooling strategies wasencouraging as in most cases the tool life was found close to floodstrategy or sometimes even better. The study revealed that theinfluence of the MQCL (Internal) application method on overallmachining performance was more evident at higher cutting speeds. Inaddition to the experimental machinability investigations, FiniteElement Modeling (FEM) and Computational Fluid Dynamic (CFD)Modeling was also employed to prediction of energy consumed inmachining and cutting temperature distribution on the cutting tool. Allnumerical results were found in close agreement to the experimentaldata. The contribution of the thesis should be of interest to those whowork in the areas of sustainable machining. / <p>QC 20150915</p>
396

A combined computational and experimental study of heterogeneous fracture

Wang, Neng 21 September 2015 (has links)
Material property heterogeneity is present ubiquitously in various natural and man-made materials, such as bones, seashells, rocks, concrete, composites, and functionally graded materials. A fundamental understanding of the structure-property relationships in these material systems is crucial for the development of advanced materials with extreme properties. Well-developed homogenization schemes exist to establish such relationships in elasticity, electrostatics, magnetism, and other time- or history-independent material properties. Nevertheless, one’s understanding of the effective fracture properties of heterogeneous media is remarkably limited. The challenge here is that heterogeneous fracture, as a history-dependent process, involves complex interaction and negotiation of a discontinuity front with local heterogeneities. The determination of effective fracture properties necessitates a critical interrogation of this evolutionary process in detail. In this work, a combined experimental and modeling effort is made to examine and control fracture mechanisms in heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough biological materials, is selected as a model material. In the computational part of this work, finite element analysis with cohesive zone modeling is used to model crack propagation and arrest in the laminated direction. A crack-tip-opening controlled algorithm is implemented to overcome the instability problems associated with inherently unstable crack growth. Computational results indicate that the mismatch of elastic modulus is an important factor in determining the fracture behaviors of the heterogeneous model material. Significant enhancement in the material’s effective fracture toughness can be achieved with appropriate modulus mismatch. Systematic parametric studies are also performed to investigate the effects of various material and geometrical parameters, including modulus mismatch ratio, phase volume fractions, T-stress, and cohesive zone size. Concurrently, a novel stereolithography-based additive manufacturing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of each specimen is performed using the tapered double-cantilever beam (TDCB) test method. With optimized material and geometrical parameters, heterogeneous TDCB specimens are found to exhibit higher fracture toughness than their homogenous counterparts, which is in good agreement with the computational predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of ultra-tough materials through patterned heterogeneities.
397

Development and analysis of a new component test for a sliding door system

Sun, Minghao, Chen, Xianyang, Kuai, Le January 2015 (has links)
The IKEA sliding door system is widely employed on IKEA’s wardrobes. In view of the massive usage of it, any optimization for reducing production costs is crucial. This work attempts to develop a special static test rig for a component of IKEA’s sliding door system. It will be used to check the quality of the component in production. The simulation-driven design method will be used in the entire process. Therefore, before proceeding with the details of the test rig, the priority should be given to the simulation. In particular, the nonlinear finite element method (FEM) will be used to identify the break load of the studied component. Finite element models were created in ABAQUS/Standard. Four kinds of POM were used to define the model’s material properties. Meanwhile the compression experiment were also conducted. Finite element models were used to predict the load capacity and compare it with the experimental results. The closest prediction in relation to the test results was 2124N, merely 6N smaller than the experimental results, giving the proof of a good finite element analysis. Based on the results of simulations and compression tests, a proper test rig consisting of a pneumatic system and load cell was selected from four concepts. The air cylinder can provide 3175N when the supplied air is 0.7MPa, which is fully met the design requirements with reasonable price.
398

Predicting the behavior of horizontally curved I-girders during construction

Stith, Jason Clarence 09 November 2010 (has links)
The majority of a bridge designer’s time is spent ensuring strength and serviceability limit states are satisfied for the completed structure under various dead and live loads. Anecdotally, the profession has done an admirable job designing safe bridges, but engineering the construction process by which bridges get built plays a lesser role in the design offices. The result of this oversight is the complete collapse of a few large bridges as well as numerous other serviceability failures during construction. According to the available literature there have been only a few attempts to monitor a full-scale bridge in the field during the entire construction process. Another challenge for engineers is the lack of analysis tools available which predict the behavior of the bridge during the intermediate construction phases. During construction, partial bracing is present and the boundary conditions can vary significantly from the final bridge configuration. The challenge is magnified for complex bridge geometries such as curved bridges or bridges with skewed supports. To address some of the concerns facing engineers a three span curved steel I-girder bridge was monitored throughout the entire construction process. Field studies collected data on the girder lifting behavior, partially constructed behavior, and concrete deck placement behavior. Additional analytical studies followed using the field measurements to verify the finite element models. Finally, conclusions drawn from the physical and analytical testing were utilized to derive equations that predicted behavior, and analysis tools were developed to provide engineers with solutions to a wide range of construction related problems. This dissertation describes the development of two design tools, UT Lift and UT Bridge. UT Lift is a macro-enabled Excel spreadsheet that predicts the behavior of curved I-girders during lifting. The derivation of the equations necessary to accomplish these calculations and the implementation are described in this dissertation. UT Bridge is a PC-based, user-friendly, 3-D finite element program for I-girder bridges. The basic design philosophy of UT Bridge aims to allow an engineer to take the information readily available in a set of bridge drawings and easily input the necessary information into the program. A straight or curved I-girder bridge with any number of girders or spans can then be analyzed with a robust finite element analysis for either the erection sequence or the concrete deck placement. The development of UT Bridge as well as the necessary element formulations is provided in this dissertation. / text
399

Skeletal Muscle Contraction Simulation: A Comparison in Modeling

Ford, Jonathan M. 27 November 2013 (has links)
Computer generated three-dimensional (3-D) models are being used at increasing rates in the fields of entertainment, education, research, and engineering. One of the aspects of interest includes the behavior and function of the musculoskeletal system. One such tool used by engineers is the finite element method (FEM) to simulate the physics behind muscle mechanics. There are several ways to represent 3-D muscle geometry, namely a bulk, a central line of action and a spline model. The purpose of this study is to exmine how these three representations affect the overall outcome of muscle movement. This is examined in a series of phases with Phase I using primitive geometry as a simplistic representation of muscle. Phases II and III add anatomical representations of the shoulder joint with increasing complexity. Two methods of contraction focused on an applied maximal force (Fmax) and prescribed displacement. Further analyses tested the variability of material properties as well as simulated injury scenarios. The results were compared based on displacement, von Mises stress and solve time. As expected, more complex models took longer to solve. It was also supported that applied force is a preferred method of contraction as it allows for antagonistic and synergistic interaction between muscles. The most important result found in these studies was the consistency in the levels of displacement and stress distribution across the three different 3-D representations of muscle. This stability allows for the interchangeability between the three different representations of muscles and will permit researchers to choose to use either a bulk, central line of action or a spline model. The determination of which 3-D representation to use lies in what physical phenomenon (motion, injury etc.) is being simulated.
400

Biomechanical Assessment of a Human Joint under Natural and Clinically Modified Conditions: The Shoulder

Bernal Covarrubias, Rafael Ricardo January 2015 (has links)
Unbalanced muscle forces in the shoulder joint may lead to functional impairment in the setting of rotator cuff tear and progressive arthritis in cuff tear arthropathy. A model, which predicts muscle forces for common shoulder movements, could be used to help in treatment decision-making and in improving the design of total shoulder prosthesis. Unfortunately, the shoulder has many muscles that overlap in function leading to an indeterminate system. A finite element model employing an optimization algorithm could be used to reduce the number of degrees of freedom and predict loading of the glenohumeral joint. The goal of this study was to develop an anatomically and physiologically correct computational model of the glenohumeral joint. This model was applied to: 1) estimate the force in each muscle during the standard glenohumeral motions (flexion/extension, abduction/adduction and internal/ external rotation), and 2) determine stress concentrations within the scapula during these motions. These goals were realized through the following steps: First, a three dimensional bone reconstruction was performed using computed tomography (CT) scan data. This allowed for a precise anatomical representation of the bony components. Then muscle lever arms were estimated based on the reconstructed bones using computer-aided design software. The origins, insertions, and muscle paths were obtained from the literature. This model was then applied to estimate the forces within each of the muscles that are necessary to stabilize the joint at a fixed position. Last, finite element analysis of the scapula was performed to study the stress concentrations. These were identified and related to the morphology of the bone. A force estimation algorithm was then developed to determine the necessary muscle force distribution. This algorithm was based on an applied external moment at the joint, and the appropriate selection of muscles that could withstand it, ensuring stability, while keeping the reaction force at a minimum. This method offered an acceptable solution to the indeterminate problem, a unique solution was found for each shoulder motion. The model was then applied to determine the stress concentration within various regions of the scapula for each of the shoulder motions. The rotator cuff was found to act as the main stabilizer under rotation, and had a significant stabilizing role under flexion and abduction. The finite element model of the shoulder that was developed can be used to gain a better understanding of the load transfer mechanisms within the glenohumeral joint and the impact of muscle forces on scapular morphology. This information can then be used to assist with treatment decision-making for rotator cuff tears and with the design of new implants for total shoulder arthroplasty.

Page generated in 0.3086 seconds