• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 35
  • 20
  • 10
  • 6
  • Tagged with
  • 276
  • 276
  • 276
  • 103
  • 49
  • 38
  • 36
  • 35
  • 31
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Modeling of Electrolytic Membranes for Large Area Planar Solid Oxide Fuel Cells

Suresh, Angel D. 25 October 2010 (has links)
No description available.
232

Modeling of 3D Magnetostrictive Systems with Application to Galfenol and Terfenol-D Transducers

Chakrabarti, Suryarghya 19 December 2011 (has links)
No description available.
233

A continuum model for milled corn stover in a compression feed screw

Abhishek Paul (13950015) 13 October 2022 (has links)
<p>Controllable continuous feeding of biomass feedstock in a biorefinery is critical to upscaling current ethanol conversion techniques to a commercial scale. Mechanical pretreatment of biomass feedstock performed using a compression feed screw (CFS) improves the ethanol yield but is subject to flowability issues, especially the plugging of biomass. The mechanical behavior, and hence, the flowability of biomass feedstock, is strongly affected by several factors, including preparation method, moisture content, physical composition, and particle size distribution. In addition, the current design of CFS is guided by limited experimentation and even fewer theoretical correlations. This thesis aims at developing computational methods to model the flow of densified feedstock in a CFS and experimental techniques to characterize the mechanical properties required for the model. We adopted a modified Drucker-Prager Cap constitutive (mDPC) law for milled corn stover (a widely used feedstock for bioethanol production) to model the material’s rate-independent bulk behavior in a CFS. The mDPC elastoplastic law captures the frictional shear and permanent volumetric changes in corn stover using a continuous porosity-dependent yield surface. The parameters of the mDPC model are calibrated using a unified set of single-ended die compaction and multiple shear failure tests. In addition, we quantified the changes in the mDPC parameters with moisture content up to the water-holding capacity of corn stover particles. A Coupled Eulerian-Lagrangian Finite Element Method model developed for the CFS geometry predicts the deformation of the material using the calibrated mDPC parameters. We model the interaction between the material and the CFS surface using a Coulomb wall friction coefficient calibrated using the Janssen-Walker method for a punch and die system. A laboratory-scale compression feed screw is designed and fabricated to characterize the flow of dense granular materials in collaboration with undergraduate students in the School of Mechanical Engineering. FEM model predictions of feeding torque and mass flow rate are validated against the laboratory-scale feeder for microcrystalline cellulose Avicel PH-200 and milled corn stover. The model predictions agree with the experiments for Avicel PH-200 but have a higher error in the case of corn stover. Some physical effects, such as shear hardening and particle erosion observed in milled corn stover, are not captured using the current implementation of the mDPC model, which explains the different model accuracies for both materials. The continuum model is used to uncover material density distribution, torque, and pressure inside the CFS, otherwise challenging through experiments. The FEM model showed a significantly higher sensitivity of the feeder performance to two material properties, namely the hydrostatic yield stress and the wall friction coefficient. The characterized variation of material properties with moisture content and the effect of each material property on the feeder performance provide strategies to engineer the feedstock for better flowability. Further, the continuum model offers a method to study design changes before manufacturing the equipment. Finally, we propose the possibility of a reduced-order analytical model based on the critical material properties and the material deformation mechanism demonstrated by the FEM model.</p>
234

ANELASTIC BEHAVIOR AND DIFFRACTION MODELING OF SILICON CARBIDE WHISKER REINFORCED ALUMINA

Kong, Juan 04 1900 (has links)
<p>The superior high-temperature elastic-plastic properties coupled with greater damage tolerance when compared with monolithic ceramics make ceramic matrix composites, CMCs, promising candidates for challenging applications such as engine components, rocket nozzles, cutting tools and nuclear energy reactor core components. Anelastic recovery is the time-dependent back strain observed upon the load removal following creep. In whisker-reinforced CMCs this can be a factor limiting operating conditions. Plastic strain misfit between two phases is thought to be the main driver in terms of the interactions within a percolating network. However, the network deformation mechanisms are still unclear and a previous neutron diffraction study showed an unexpected decrease of peak width after creep contradicting the theoretical predictions.</p> <p>In this contribution, the finite element method (FEM) is applied to a representative volume element (RVE) with proper boundary conditions in order to simulate the creep deformation and hot pressing processes. Three geometries have been generated and studied: a 3D randomly-oriented short-fiber unit cell without fiber to fiber contact, generated by a random sequential adsorption algorithm; 3D regularly aligned single fiber unit cells; and 2D regularly aligned percolating unit cells. Deformation mechanism has been studied from an energy point of view and compared with a modified analytical model. Then a virtual diffraction model has been developed providing a framework to transfer information between the FEM simulations (strain fields) and the diffraction pattern in terms of the peak width (full width at half maximum: <strong><em>FWHM</em></strong>) and peak position as a measure of stress distribution and mean stress state respectively. Furthermore, the coupling effects of external stress, deformation mode, and thermal stress on the diffraction patterns have been studied.</p> <p>The critical importance of a percolating whisker network for the anelastic recovery is demonstrated based on the 3D multi-whisker random unit cell. Whisker bending is shown to be the dominant mechanism over contact effects during the creep deformation of a composite containing a well aligned percolating whisker network based on the 2D unit cell model. Good qualitative agreement was found between our FEM simulations and the analytical model of Wilkinson and Pompe with regards to the maximum recoverable strain and the characteristic relaxation time. The analytical model captures all the critical factors characterizing the strain recovery, e.g., the effect of creep pre-exponent constant, whisker Young’s modulus and aspect ratio. Furthermore, it is found that the deformation from an initial stress-free state inevitably introduces peak broadening of whiskers inside the matrix. Several factors determine the peak-width and -shift, i.e., creep strain, applied stress, aspect ratio and geometry. However, thermal stress from the cooling stages following creep and hot pressing processes shelters this broadening effect and complicates the trends. Wide-ranging peak-width changes from narrowing to broadening are predicted depending on the geometry and applied stress. The peak position is shifted to a lower angle due to this thermal effect. This clearly explains the contradicting phenomena motivating this work and leads to that recommendation that a diffraction source with high angular resolution is needed to detect the subtle change of peak profile during creep.</p> / Doctor of Philosophy (PhD)
235

Durabilité des interfaces collées béton/renforts composites : développement d'une méthodologie d'étude basée sur un dispositif de fluage innovant conçu pour être couplé à un vieillissement hygrothermique / Durability of the stuck interfaces composite concretes-reinforcements

Houhou, Noureddine 28 September 2012 (has links)
Le programme de recherche développé dans le cadre de cette thèse a pour principal objectif de concevoir, réaliser et valider une méthodologie d'étude des effets du vieillissement des interfaces collées, basée sur l'utilisation d'un dispositif de fluage innovant pouvant être couplé à un vieillissement hygrothermique. Celui-ci reprend la configuration classique de joint à double recouvrement mais permet de solliciter sous charge constante l'assemblage collé béton/composite. Il présente de plus certaines spécificités (zones de joint non sollicitées, compatibilité avec une machine d'essai à simple recouvrement existante,...) qui permettent de recueillir un grand nombre de résultat expérimentaux complémentaires. En premier lieux, nos travaux présentent une synthèse bibliographique retraçant le contexte du renforcement par composites collés et précisant les principaux mécanismes physico-chimiques susceptibles d'affecter la durabilité des adhésifs. Le manuscrit décrit ensuite les travaux expérimentaux menés pour étudier le comportement mécanique et physico-chimique des deux adhésifs sélectionnés pour la réalisation des joints collés béton/composites. Finalement, une approche prédictive basée sur i) des tests de fluage thermo-stimulés, ii) sur l'application du Principe de Superposition Temps-Température et iii) sur l'utilisation du modèle rhéologique de Burger, a permis de proposer un modèle de fluage non linéaire pour chacun des deux systèmes de colle. La seconde partie des travaux expérimentaux concerne la conception et la validation d'un dispositif innovant destiné à la caractérisation du comportement en fluage des interfaces collées béton/composite. Un élément important du cahier des charges de ce dispositif était d'en limiter l'encombrement, de sorte qu'il soit possible de tester plusieurs corps d'épreuve dans une chambre climatique au volume réduit, en vue d'étudier les effets synergiques du fluage et du vieillissement environnemental sur la durabilité des joints collés. Dans ce contexte, un prototype capable de solliciter en fluage trois corps d'épreuves à double recouvrement réalisés avec le procédé de renforcement Sika®Carbodur®S et connectés sur un unique circuit hydraulique, a été conçu et réalisé. Les résultats issus du prototype ont permis de le valider, en vérifiant notamment le maintient dans le temps de la charge appliquée, et le comportement symétrique des corps d'épreuve à double recouvrement. Le comportement mécanique des interfaces collées s'est révélé répétable, symétrique et conforme aux diverses modélisations réalisées, soit en calculant la réponse instantanée de l'interface au moyen d'un logiciel aux Eléments Finis (E.F.) ou à partir du modèle analytique de Volkersen, soit en calculant la réponse différée de l'interface en intégrant le modèle de fluage non linéaire de l'adhésif identifié précédemment dans le calcul aux E.F.. La dernière partie des travaux présentés dans le manuscrit concerne la réalisation d'un banc complet de fluage impliquant 14 corps d'épreuves à double recouvrement. Ces corps d'épreuve sont réalisés pour moitié avec le système de renforcement Sika®Carbodur®S et pour l'autre moitié avec le système Compodex. Le banc de fluage est installé dans la salle de vieillissement hygrothermique du Département Laboratoire d'Autun (40°C ; 95% H.R.). Tous les corps d'épreuves sont sollicités en fluage par un système de chargement alimenté par un circuit hydraulique similaire à celui utilisé pour le prototype, mais complété par une centrale hydraulique régulant la pression à partir de la mesure d'un capteur de pression. Pour compléter ces caractérisations sur interfaces collées, des essais de vieillissement sont également menés sur des éprouvettes d'adhésifs massiques stockées dans la salle climatique, certaines d'entre elles étant simultanément soumises à des sollicitations de fluage / The main objective of the present research is to design, realize and validate a methodology for studying ageing of bonded interfaces, based on the development of an innovative experimental creep device that can be coupled to hydrothermal aging. This device is based on the double-lap joint shear test configuration and enables to apply a constant load to the bonded assembly. In addition, this device combines other complementary features (unsolicited bonded joint zones, compatibility with an existing single lap shear test machine ...) that allows collecting useful complementary data. First, our work presents a literature review outlining the context of strengthening by bonded composite and specifying the main physicochemical mechanisms that may affect the durability of adhesive joints. Then, the manuscript describes the experimental characterizations carried out to assess both mechanical and physicochemical behaviors of the two adhesives selected for this study and which will be used to bond the composite on RC specimens in a later stage. Finally, a predictive approach based on i) thermo-stimulated creep tests, ii) on the application of the Time-Temperature-Superposition Principle and iii) on the use of the Burger's rheological model, allowed us to propose a non-linear creep model for each of the two adhesive systems. The second part of the experimental work is devoted to the design and validation of an innovative device for characterizing the creep behavior of concrete / composite adhesively bonded interfaces. An important requirement in the specifications was to reduce the size of the experimental device, so that several test specimens could be installed in a climatic room of limited volume, in order to study the synergistic effects of creep and hydrothermal ageing on the joint durability. In this line, a prototype involving three double-shear test-specimens loaded by flat jacks actuated by a centralized hydraulic system, was designed and realized (test-specimens were prepared using the Sika®Carbodur® S strengthening system). Collected data made it possible to validate the creep setup, by checking the constancy of the applied load over time, and the symmetrical behavior of the double lap shear test bodies. The mechanical behavior of the bonded interfaces was found to be repeatable, symmetrical and in a fair agreement with numerical and analytical modeling, done either by calculating the instantaneous response of the interface using a finite element (FE) approach and the analytical Völkersen's model, or by simulating the delayed creep response of the interface using a FE model in which the non-linear creep behavior of the adhesive layer had been implemented. The last chapter of the manuscript presents the realization of a full-scale creep setup involving fourteen double lap test specimens. Half of the test specimens were strengthened with Sika®Carbodur ® S and the other half with Compodex® C12 reinforcing composite system. This creep setup was installed in the climatic room of the Département Laboratoire d'Autun (40°C, 95% R.H.). Test specimens are creep loaded thanks to flat jacks powered by a hydraulic system similar to that used in the prototype, but supplemented by an electronic station that ensures pressure regulation in the circuit, based on the measurements of a pressure sensor. Beside these characterizations of bonded interfaces, complementary tests are also conducted on samples of the buk adhesive material stored in the climatic room, some of these samples being simultaneously subjected to creep loading
236

Wheat fiber from a residue to a reinforcing material

Albahttiti, Mohammed T. January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder A. Rasheed / Throughout history natural fiber was used as one of the main building materials all over the world. Because the use of such materials has decreased in the last century, not much research has been conducted to investigate their performance as a reinforcing material in cement and concrete. In order to investigate one of the most common natural fibers, wheat fibers, as a reinforcing material, 156 mortar specimens and 99 concrete specimens were tested. The specimens were tested in either uniaxial compression or flexure. The uniaxial compression test included 2 in (50.8 mm) mortar cubes and 4x8 in (101.6 x 203.2 mm) concrete cylinders. As for the flexure test, they were either 40x40x160 mm cementitious matrix prisms or 6x6x21 in (152.4x152.4x533.4 mm) concrete prisms. Several wheat fibers percentages were studied and compared with polypropylene fiber as a benchmarking alternative. The average increase in the uniaxial compression strength for cementitious matrix cubes reinforced with 0.5% long wheat fiber exceeded that of their counterparts reinforced with polypropylene fiber by 15%. Whereas for concrete cylinders reinforced with 0.75% long wheat fiber, their strength exceeded that of their counterparts reinforced with polypropylene fiber by 5% and that of the control by 7%. The flexural strength of cementitious matrix prisms reinforced with 0.75% long wheat fiber exceeded that of their counterparts reinforced with polypropylene fiber by 27%. Meanwhile, concrete prisms reinforced with both long wheat fiber and polypropylene fiber showed deterioration in strength of up to 17%. Finally, ABAQUS models were developed for concrete cylinders and prisms to simulate the effect of inclusion of the wheat fibers.
237

Étude des endommagements sur CMC par une approche de modélisation micro-méso alimentée par des essais in situ / In situ tests and micro-meso modeling for damage analysis in CMC

Mazars, Vincent 30 November 2018 (has links)
Les composites SiC/SiC pr´esentent d’excellentes propri´et´es thermom´ecaniques `a hautes temp´eratures. Ils apparaissent donc comme des candidats cr´edibles pour remplacer les alliages m´etalliques dans les zones chaudes de moteurs a´eronautiques civils afin d’en r´eduire l’impact environnemental. Comprendre et pr´evoir l’apparition des premiers endommagements constitue donc un enjeu industriel majeur. La d´emarche multi-´echelle propos´ee permet d’int´egrer dans des mod`eles num´eriques les sp´ecificit´es du mat´eriau. Elle s’articule autour d’une phase exp´erimentale de caract´erisation des endommagements et d’une phase de mod´elisation par ´el´ements finis aux ´echelles microscopique et m´esoscopique. Des essais in situ sous microscopes et sous micro-tomographie X (μCT) sont e↵ectu´es pour visualiser et quantifier les m´ecanismes d’endommagement `a des ´echelles compatibles avec les mod`eles num´eriques. Sur la base des observations exp´erimentales, des calculs d’endommagement sont r´ealis´es `a l’´echelle microscopique afin de simuler la fissuration transverse des torons. Des essais virtuels permettent alors d’identifier des lois d’endommagement `a l’´echelle sup´erieure et de mod´eliser l’apparition des premi`eres fissures dans des textures tiss´ees 3D `a l’´echelle m´esoscopique. Cela permet de mettre en ´evidence les liens entre l’organisation du mat´eriau aux di↵´erentes ´echelles et l’initiation des premiers endommagements. Des confrontations essais/calculs sont finalement propos´ees, en comparant notamment les sites d’amor¸cage des endommagements observ´es exp´erimentalement lors des essais in situ sous μCT avec ceux pr´edits par les simulations. / SiC/SiC composites display excellent thermomechanical properties at high temperatures. They appear as promising candidates to replace metallic alloys in hot parts of aircraft engines to reduce their environmental impact. Thus, to understand and to predict the onset of damage in such materials is critical. An integrated multi-scale approach is developed to construct numerical models that integrate the specificities of the material at the di↵erent relevant scales. This work is twofold : an experimental characterization of the damage, and finite element modeling at the microscopic and mesoscopic scales. In situ tensile tests are carried out under microscopes and X-ray micro-tomography (μCT). Images are analyzed to visualize and quantify the damage mechanisms at scales consistent with the numerical models. Based on these observations, damage calculations are performed at the microscopic scale to simulate the transverse yarns cracking. Virtual tests are then used to identify damage laws at the upper scale and to simulate the first cracks in 3D woven composites at the mesoscopic scale. Through these simulations, we highlight the links between the organization of the material at di↵erent scales and the initiation of the damages. Comparisons between experiments and calculations are finally performed. In particular, the predicted damage events are compared to those obtained experimentally on the same specimen during in situ μCT tensile tests.
238

Conception et caractérisation mécanique des pièces en matériaux composites moulées par compression / Design and mechanical characterization of composite components made by hot pressing moulding

Kamgaing Somoh, Georges Bertrand 24 September 2013 (has links)
Si l'emploi des matériaux composites dans l'aéronautique est déjà effectif sur des éléments de structures principales et de grande taille, leur généralisation aux structures secondaires bute sur leur positionnement en termes de coûts et performances face aux métaux. Il s'agit dans ce travail de contribuer à la mise en place d'une filière française de pièces composites hautes performances à bas coûts en s'appuyant sur un procédé de moulage en grande série, à savoir le thermoformage à haute pression. Ainsi, il a été question dans un premier temps d'optimiser ce procédé vis-à-vis des principales matières rencontrées dans les structures aéronautiques. Ensuite, les stratifiés moulés ont été caractérisés et les effets des conditions environnementales sévères (humidité, température, impact) sur leur comportement mécanique étudiés. Par ailleurs, réduire les coûts des pièces signifie également réduire les coefficients de sécurité qui restent très élevés pour les pièces composites. Cela passe par une meilleure prédictibilité de la rupture des matériaux et du comportement mécanique au-delà du linéaire. Sur le carbone/PEEK satin de 5 pris comme matériau d'illustration, les phénomènes non linéaires (viscoplasticité) ainsi que les mécanismes d'endommagement et de rupture ont été étudiés. Un accent particulier a été mis sur le délaminage et un critère permettant de prédire son amorçage a été proposé. La possibilité de faire des modèles éléments finis des pièces directement à l'échelle mésoscopique (du pli) a été également explorée et laisse entrevoir des pistes prometteuses pour des dimensionnements plus sûrs et donc moins conservatifs. / If the use of composite materials is already effective on elements of main structures and large size parts, their generalization to secondary parts is not effective due to their cost and their performances compared to metals. The framework of this thesis is to contribute to the establishment of a French chain of high performance composite parts at low cost. Thus, it was initially question of optimizing the process vis-à-vis the main composite materials used in the aerospace structures. Then, the molded laminates were characterized and the effects of severe conditions (humidity, temperature, impact) on their mechanical behavior were studied. Also, reduce the cost of parts also means reducing the safety factors which remain very high. This requires a better prediction of the failure and the mechanical behavior beyond the linear. Taking the five harness satin weave carbon/PEEK material as example, non-linear phenomena (viscoplasticity), damage mechanisms and failure criteria were studied, with particular emphasis on the delamination. The possibility to perform finite element analysis of the parts directly at the mesoscopic scale (ply-scale) was also explored and suggests promising expectations for a less conservative sizing of composite structures.
239

Contribuição à análise da resistência à força cortante em lajes de concreto estrutural sem armadura transversal / Contribution to the analysis of shear strength in structural concrete slabs without transverse reinforcement

Sousa, Alex Micael Dantas de 18 March 2019 (has links)
A resistência à força cortante em lajes de pontes sem armadura transversal têm sido um aspecto preocupante nas verificações de estruturas de concreto estrutural construídas décadas passadas e está diretamente relacionado aos modelos de cálculo de resistência à força cortante e de largura colaborante empregados no caso de cargas parcialmente distribuídas próximas do apoio. Entretanto, não existem ainda estudos nacionais relacionados ao nível de acurácia e precisão das abordagens geralmente empregadas na prática de projetos de pontes no Brasil. Por esta razão, propõem-se apresentar uma contribuição às análises de resistência à força cortante em lajes de pontes com ênfase no modelo de cálculo da ABNT NBR 6118:2014. Para isto foram comparados os resultados experimentais e teóricos utilizando diferentes modelos de resistência à força cortante e uma base de dados construída a partir de 642 resultados experimentais. Posteriormente, alguns modelos experimentais foram explorados por meio de simulações numéricas em elementos finitos no intuito de avaliar o nível de aproximações desta abordagem e investigar a influência de parâmetros como mísulas na proximidade dos apoios. Dentre os principais resultados desta pesquisa destaca-se que o valor médio da relação entre a resistência à força cortante teórica e experimental Vexp/Vcal utilizando a ABNT NBR 6118:2014 variou de 2,145 a 1,140 conforme o modelo de largura colaborante utilizado. Enquanto isso, os modelos numéricos calibrados apresentaram relação Vexp/VMEF variando entre 0,95 e 1,01 e com coeficientes de variação menores que 15%. De maneira geral, identificou-se que os modelos de resistência à força cortante apresentam elevados níveis de dispersão entre resultados teóricos e experimentais no caso de lajes e faixas de laje e que os modelos mais usuais de definição da largura colaborante não são precisamente adequados para o caso de cargas parcialmente distribuídas próximas do apoio. / The shear strength in bridge slabs without transverse reinforcement has been a matter of concern in structural concrete structures checks built in the past decades and is directly related to the shear force and effective width calculation models employed in the case of partially distributed loads close to the support. However, there are still no national studies related to the level of accuracy and precision of the approaches commonly used in the practice of bridge projects in Brazil. For this reason, it is proposed to contribute to the shear strength analyzes in bridge slabs with emphasis on the calculation model of ABNT NBR 6118: 2014. For this, we compared the experimental and theoretical results using different models of shear strength and a database constructed from 642 experimental results. Subsequently, some experimental models were explored by means of numerical simulations in finite elements in order to evaluate the level of approximations of this approach and to investigate the influence of parameters such as greater thickness close to the supports. Among the main results of this research, it is worth noting that the average value of the relationship between theoretical and experimental shear strength Vexp/Vcal using ABNT NBR 6118: 2014 varied from 2,145 to 1,140 according to the effective width model used. Meanwhile, the calibrated numerical models showed Vexp/VMEF ratio varying between 0.95 and 1.01 and with coefficients of variation lower than 15%. In general, it was identified that the shear strength models present high levels of dispersion between theoretical and experimental results in the case of slabs and slab strips and that the most usual models of defining the effective width are not precisely adequate for the partially distributed loads close to the support in slabs.
240

Développement d’un dispositif médical implantable d’assistance ventriculaire par compression cardiaque directe : l’exosquelette cardiaque / Development of an implantable medical device for ventricular assistance by direct cardiac compression : «The Cardiac Exoskeleton »

Chalon, Antoine 18 December 2018 (has links)
L’assistance ventriculaire constitue une voie thérapeutique prometteuse de l’insuffisance cardiaque terminale. En dépit des progrès, notamment dans le développement des assistances de type shunt ventriculo-aortique, les écueils relatifs à l’encombrement, à l’alimentation et/ou aux interactions avec le sang de ces dispositifs limitent leur application clinique. Récemment, le concept de Compression Cardiaque Directe (DCC) apparaît comme une piste prometteuse en palliant les difficultés sus-citées. Dans ce travail de thèse, nous avons mis l’accent sur la conception et le test de faisabilité d’une solution de Compression Cardiaque Directe de type mécanique et entièrement implantable appelée l’Exosquelette Cardiaque. Notre travail expérimental a porté, dans un premier temps, sur la conception assistée par ordinateur et sur la modélisation numérique permettant ainsi d’optimiser et de prédire (i) les interactions tissus myocardiques/dispositifs et (ii) les pressions ventriculaires générées. Ensuite, un prototype fonctionnel a été réalisé par fabrication additive (titane, polymères) en s’appuyant sur les données issues de la modélisation et en respectant les contraintes énergétiques, mécaniques et architecturales anatomiques. Enfin, nous avons conduit une phase d’évaluation du potentiel de ce dispositif original sur un modèle de cœur ex vivo. Nous avons pu concevoir et valider un modèle numérique fondé sur le principe des éléments finis. Ce modèle à la fois simple et robuste, a permis de simuler (i) l’impact des points de fixation du dispositif sur le tissu cardiaque, (ii) l’efficacité de la compression externe sur la genèse des pressions intraventriculaires et (iii) l’influence de la compression mécanique externe sur le tissu cardiaque. Le prototype issu de ce travail de thèse a pu produire des résultats prometteurs concernant (i) la restauration physiologique de la pression intraventriculaire, (ii) la consommation énergétique suffisamment basse et (iii) le design compatible avec les contraintes anatomiques thoracique. L’ensemble de ces résultats esquissent la possibilité d’une implantation totale de l’Exosquelette Cardiaque chez le patient / Ventricular assistance is a promising therapeutic pathway for terminal chronic heart failure. Notwithstanding the progress made for the development of aorto-ventricular shunt pump among other things, the difficulties relatives to footprint, power supply and/or blood-device interactions are somehow limiting their clinical applications. Recently, direct cardiac compression (DCC) was suggested as a promising lead to overcome the difficulties mentioned above. In this work, we focused on the design and the feasibility of an implantable and mechanical Direct Cardiac Compression device called: The Cardiac Exosqueleton. Our experimental work used Computer Assisted Design (CAD) and numerical modeling to optimize and predict (i) tissue-device interactions and (ii) pressure generation inside ventricular cavities. Then, a functional prototype was realized by additive manufacturing (titanium, polymer) with the help of modeling data and with respect to the anatomical, mechanical and energetical limitations. Finally, we conducted an evaluation of the ability of our device on both in vitro setup and ex vivo heart. We were able to conceive and validate a numerical model based on finite element techniques. This simple yet robust model allowed us to study (i) the impact of suture fixation of a device at the apex of the heart, (ii) the influence of the direct cardiac compression on intracardiac pressures and (iii) overall and local tissue stress in the myocardium. Our prototype showed promising results concerning (i) the restoration of physiological intraventricular pressures, (ii) a low energy consumption and (iii) a shape that is compatible with the thoracic anatomical constraints. All of these results allow us to envision a total implantation of the cardiac exoskeleton into the patient

Page generated in 0.1284 seconds