• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A kinesiological evaluation of diving fin design and performance

Yee, Michael Townsend. January 1991 (has links)
Thesis (M.S.)--University of California, Los Angeles, 1991. / Typescript (photocopy). Includes bibliographical references.
2

Die sog. hornfäden und die flossenstrahlen der fische ...

Brohl, Engelbert, January 1909 (has links)
Inaug.-diss.--Jena. / Lebenslauf. "Abdruck aus der Jenaischen zeitschrift für naturwissenschaft. Bd. XLV, n.f. XXXVIII, heft 2. 1909." "Literaturverzeichnis": p. 32-34.
3

Evolution of modular morphology in actinopterygian pectoral fins

Tissandier, Sylvie. January 2006 (has links)
No description available.
4

Evolution of modular morphology in actinopterygian pectoral fins

Tissandier, Sylvie. January 2006 (has links)
With a generally conserved function for locomotion, paired fins have an extensive evolutionary history that has resulted in highly disparate morphologies in a wide diversity of taxa. Two-dimensional geometric morphometrics offers a means to quantitatively describe disparity and changes in the shape of pectoral fins. Actinopterygians lend themselves well to a study of this nature due to their prolific diversity and prevalence in the fossil record. As a result of changes in skeletal fin structures and the lack of homologous elements throughout the group, three morphological modules are used as the unit of comparison rather than individual elements of the fin. Ordination plots from thin plate spline analyses, including fossil and extant taxa, show correspondence with the actinopterygian phylogeny as trends become apparent through the group. Basal actinopterygians and basal teleosts tend to have a narrow, elongate fin shape. Following a shift in morphospace, derived teleosts have a wider fin base, with an elongate anterior margin of the fin relative to the posterior trailing edge. Linear and squared-change parsimony reconstructions of continuous data allow the phylogeny to be traced through morphospace to approximate the path of pectoral fin evolution. The shift in morphospace occurs at Acanthomorpha, and is correlated with the evolution of a physoclistous swim bladder and a change in the position and orientation of pectoral fins. As a result of these changes, new swimming modes are made available, and the expansion of locomotory modes of Acanthomorpha is here hypothesized to be associated with a sharp increase in pectoral fin disparity.
5

Unraveling tissue regeneration using chemical genetics /

Mathew, Lijoy K. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
6

Trace metals in sharks' fins : potential health consequences for consumers /

Leung, Chak-cheong. January 2007 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2007.
7

Pelvic fin locomotion in batoids

Unknown Date (has links)
Although most batoids (skates and rays) are benthic, only the skates (Rajidae) have been described as performing benthic locomotion, termed 'punting'. While keeping the rest of the body motionless, the skate's specialized pelvic fins are planted into the substrate and then retracted caudally, which thrusts the body forward. This may be advantageous for locating and feeding on prey, avoiding predators, and reducing energetic costs. By integrating kinematic, musculoskeletal, material properties, and compositional analyses across a range of morphologically and phylogenetically diverse batoids, this dissertation (i) demonstrates that punting is not confined to the skates, and (ii) provides reliable anatomical and mechanical predictors of punting ability. Batoids in this study performed true punting (employing only pelvic fins), or augmented punting (employing pectoral and pelvic fins). Despite the additional thrust from the pectoral fins, augmented punters failed to exceed the punting c apabilities of the true punters. True punters' pelvic fins had greater surface area and more specialized and robust musculature compared to the augmented punters' fins. The flexural stiffness of the main skeletal element used in punting, the propterygium, correlated with punting ability (3.37 x 10-5 - 1.80 x 10-4 Nm2). Variation was due to differences in mineral content (24.4-48-9% dry mass), and thus, material stiffness (140-2533 MPa), and second moment of area. The propterygium's radius-to-thickness ratio (mean = 5.52 +-0.441 SE) indicated that the propterygium would support true and augmented punters, but not non-punters, in an aquatic environment. All propterygia would fail on land. Geometric and linear morphometric analyses of 61 batoid pelvic girdles demonstrated that pelvic girdle shape can predict punting and swimming ability and taxonomic attribution to Order. / Characteristics of true punters' pelvic girdles, such as laterally facing fin articulations, large surface area formuscle attachment, and tall lateral pelvic processes are similar to characteristics of early sprawled-gait tetrapods' pelvic girdles. This dissertation demonstrates that punting is common in batoids, illustrates the convergent evolution of true punter and early tetrapod pelvic anatomy, and gives possible explanations for the restriction of elasmobranchs to aquatic habitats. / by Laura Jane Macesic. / Thesis ({Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
8

Trace metals in sharks' fins: potential health consequences for consumers

梁澤昌, Leung, Chak-cheong. January 2007 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
9

Wnt signaling in zebrafish fin regeneration : chemical biology using a GSK3β inhibitor

Curtis, Courtney L. 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Bone growth can be impaired due to disease, such as osteoporosis. Currently, intermittent parathyroid hormone (PTH) treatment is the only approved therapy in the United States for anabolic bone growth in osteoporosis patients. The anabolic effects of PTH treatment are due, at least in part, to modulation of the Wnt/β-catenin pathway. Activation of the Wnt/ β-catenin pathway using a small molecule inhibitor of GSK3β was previously shown to increase markers of bone formation in vitro. Our study utilized a zebrafish model system to study Wnt activated fin regeneration and bone growth. Wnt signaling is the first genetically identified step in fin regeneration, and bony rays are the main structure in zebrafish fins. Thus, zebrafish fin regeneration may be a useful model to study Wnt signaling mediated bone growth. Fin regeneration experiments were conducted using various concentrations of a GSK3β inhibitor compound, LSN 2105786, for different treatment periods and regenerative outgrowth was measured at 4 and 7 days post amputation. Experiments revealed continuous low concentration (4-5 nM) treatment to be most effective at increasing regeneration. Higher concentrations inhibited fin growth, perhaps by excessive stimulation of differentiation programs. In situ hybridization experiments were performed to examine effects of GSK3β inhibitor on Wnt responsive gene expression. Experiments showed temporal and spatial changes on individual gene markers following GSK3β inhibitor treatment. Additionally, confocal microscopy and immunofluorescence labeling data indicated that the Wnt signaling intracellular signal transducer, β-catenin, accumulates throughout GSK3β inhibitor treated tissues. Finally, experiments revealed increased cell proliferation in fin regenerates following LSN 2105786 treatment. Together, these data indicate that bone growth in zebrafish fin regeneration is improved by activating Wnt signaling. Zebrafish Wnt signaling experiments provide a good model to study bone growth and bone repair mechanisms, and may provide an efficient drug discovery platform.

Page generated in 0.061 seconds