• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph Based Regularization of Large Covariance Matrices

Yekollu, Srikar January 2009 (has links)
No description available.
2

En jämförelse av Eigenface- och Fisherface-metoden tillämpade i en Raspberry Pi 2 / A comparison between Eigenfaces and Fisherfaces implemented on a Raspberry Pi 2

Dahl, Dag, Gustaf, Sterne January 2016 (has links)
Syftet med rapporten är att visa möjligheten att använda Raspberry Pi 2 i ett ansiktsigenkänningssystem. Studien redogör för prestandaskillnader mellan Eigenface och Fisherfacemetoden. Studieförfattarna har genomfört en experimentell studie enligt en kvantitativ metod där tester utgör empirin. Resultatet från testerna kommer presenteras genom diagram och påvisa möjligheten att använda Raspberry Pi 2 som hårdvara i ett ansiktsigenkänningssystem. Genom samma testutförande kommer skillnader mellan igenkänningsmetoderna att påvisas. Studien visar att Raspberry Pi 2 är en lämplig kandidat att använda för mindre ansiktsigenkänningssystem. Vidare framgår det att Fisherface-metoden är det lämpligaste valet att använda vid implementation av systemet. / The purpose with this report is to demonstrate the possibility to use Raspberry Pi 2 as hardware in a face recognition system. The study will show performance differences regarding the Eigenface- and Fisherface-method. To demonstrate the possibility the authors have done tests using an experimental study and quantitative method. To review the tests and to understand the result a qualitative literature review was taken. The tests will be presented as graphs to show the possibility to use Raspberry Pi 2 as hardware in a face recognition system. The same goes for the comparison of the chosen algorithms. The work indicates that Raspberry Pi 2 is a possible candidate to use for smaller face recognition systems. There is also an indication that the Fisherface method is the better choice for face recognition.
3

Autonomous Morphometrics using Depth Cameras for Object Classification and Identification / Autonom Morphometri med Djupkameror för Objektklassificering och Identifiering

Björkeson, Felix January 2013 (has links)
Identification of individuals has been solved with many different solutions around the world, either using biometric data or external means of verification such as id cards or RFID tags. The advantage of using biometric measurements is that they are directly tied to the individual and are usually unalterable. Acquiring dependable measurements is however challenging when the individuals are uncooperative. A dependable system should be able to deal with this and produce reliable identifications. The system proposed in this thesis can autonomously classify uncooperative specimens from depth data. The data is acquired from a depth camera mounted in an uncontrolled environment, where it was allowed to continuously record for two weeks. This requires stable data extraction and normalization algorithms to produce good representations of the specimens. Robust descriptors can therefore be extracted from each sample of a specimen and together with different classification algorithms, the system can be trained or validated. Even with as many as 138 different classes the system achieves high recognition rates. Inspired by the research field of face recognition, the best classification algorithm, the method of fisherfaces, was able to accurately recognize 99.6% of the validation samples. Followed by two variations of the method of eigenfaces, achieving recognition rates of 98.8% and 97.9%. These results affirm that the capabilities of the system are adequate for a commercial implementation.
4

COMPARING AND IMPROVING FACIAL RECOGNITION METHOD

Sierra, Brandon Luis 01 September 2017 (has links)
Facial recognition is the process in which a sample face can be correctly identified by a machine amongst a group of different faces. With the never-ending need for improvement in the fields of security, surveillance, and identification, facial recognition is becoming increasingly important. Considering this importance, it is imperative that the correct faces are recognized and the error rate is as minimal as possible. Despite the wide variety of current methods for facial recognition, there is no clear cut best method. This project reviews and examines three different methods for facial recognition: Eigenfaces, Fisherfaces, and Local Binary Patterns to determine which method has the highest accuracy of prediction rate. The three methods are reviewed and then compared via experiments. OpenCV, CMake, and Visual Studios were used as tools to conduct experiments. Analysis were conducted to identify which method has the highest accuracy of prediction rate with various experimental factors. By feeding a number of sample images of different people which serve as experimental subjects. The machine is first trained to generate features for each person among the testing subjects. Then, a new image was tested against the “learned” data and be labeled as one of the subjects. With experimental data analysis, the Eigenfaces method was determined to have the highest prediction rate of the three algorithms tested. The Local Binary Pattern Histogram (LBP) was found to have the lowest prediction rate. Finally, LBP was selected for the algorithm improvement. In this project, LBP was improved by identifying the most significant regions of the histograms for each person in training time. The weights of each region are assigned depending on the gray scale contrast. At recognition time, given a new face, different weights are assigned to different regions to increase prediction rate and also speed up the real time recognition. The experimental results confirmed the performance improvement.
5

Entwicklung einer offenen Softwareplattform für Visual Servoing

Sprößig, Sören 29 June 2010 (has links) (PDF)
Ziel dieser Diplomarbeit ist es, eine flexibel zu verwendende Plattform für Visual Servoing-Aufgaben zu Erstellen, mit der eine Vielzahl von verschiedenen Anwendungsfällen abgedeckt werden kann. Kernaufgabe der Arbeit ist es dabei, verschiedene Verfahren der Gesichtserkennung (face detection) am Beispiel der Haar-Kaskade und -wiedererkennung (face recognition) am Beispiel von Eigenfaces und Fisherfaces zu betrachten und an ausführlichen Beispielen vorzustellen. Dabei sollen allgemeine Grundbegriffe der Bildverarbeitung und bereits bekannte Verfahren vorgestellt und ihre Implementierung im Detail dargestellt werden. Aus den dadurch gewonnen Erkenntnissen und dem sich ergebenden Anforderungsprofil an die zu entwickelnde Plattform leitet sich anschließend die Realisierung als eigenständige Anwendung ab. Hierbei ist weiterhin zu untersuchen, wie die neu zu entwickelnde Software zukunftssicher und in Hinblick auf einen möglichen Einsatz in Praktika einfach zu verwenden realisiert werden kann. Sämtliche während der Arbeit entstandenen Programme und Quellcodes werden auf einem separaten Datenträger zur Verfügung gestellt. Eine komplett funktionsfähige Entwicklungsumgebung wird als virtuelle Maschine beigelegt.
6

Zpracování obrazu v systému Android - detekce a rozpoznání obličeje / Image processing using Android device

Korchakov, Sergei January 2014 (has links)
This master’s Thesis focuses on image processing on Android platform and development of an application, that is able to do face detection and recognition in real scene. Thesis gives highlight of modern algorithms of face detection. It first examines and compares the standard features of Android platform (FaceDetector a FaceDetectionListener) and JJIL, OpenIMAJ, OpenCV libraries experiment, and presents the results. For purposes of face recognition was selected OpenCV library. Three different algorithms of identification were tested: FisherFaces, EigenFaces a Local Binary Patterns Histograms. Based on performance comparison best methods were implemented in developed application.
7

Entwicklung einer offenen Softwareplattform für Visual Servoing

Sprößig, Sören 28 June 2010 (has links)
Ziel dieser Diplomarbeit ist es, eine flexibel zu verwendende Plattform für Visual Servoing-Aufgaben zu Erstellen, mit der eine Vielzahl von verschiedenen Anwendungsfällen abgedeckt werden kann. Kernaufgabe der Arbeit ist es dabei, verschiedene Verfahren der Gesichtserkennung (face detection) am Beispiel der Haar-Kaskade und -wiedererkennung (face recognition) am Beispiel von Eigenfaces und Fisherfaces zu betrachten und an ausführlichen Beispielen vorzustellen. Dabei sollen allgemeine Grundbegriffe der Bildverarbeitung und bereits bekannte Verfahren vorgestellt und ihre Implementierung im Detail dargestellt werden. Aus den dadurch gewonnen Erkenntnissen und dem sich ergebenden Anforderungsprofil an die zu entwickelnde Plattform leitet sich anschließend die Realisierung als eigenständige Anwendung ab. Hierbei ist weiterhin zu untersuchen, wie die neu zu entwickelnde Software zukunftssicher und in Hinblick auf einen möglichen Einsatz in Praktika einfach zu verwenden realisiert werden kann. Sämtliche während der Arbeit entstandenen Programme und Quellcodes werden auf einem separaten Datenträger zur Verfügung gestellt. Eine komplett funktionsfähige Entwicklungsumgebung wird als virtuelle Maschine beigelegt.

Page generated in 0.0802 seconds