• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stéréovision Omnidirectionnelle Large Entraxe pour la Supervision d'Intersections Routières / Wide-baseline Omnidirectional Stereovision for Intersection Monitoring

Datondji, Sokèmi René Emmanuel 03 October 2017 (has links)
La surveillance visuelle des objets dynamiques dans les carrefours routiers a été un sujet de recherche majeur au sein des communautés de vision par ordinateur et de transports intelligents, ces dernières années. De nombreux projets ont été menés afin d’améliorer la sécurité dans le contexte très particulier des carrefours. Notre analyse approfondie de l’état de l’art révèle que la majorité des systèmes en bord de voie, utilisent la vision monoculaire. Dans cette thèse, nous présentons un systèmenon-intrusif, de stéréovision-fisheye à large entraxe. Le dispositif proposé est particulièrement adapté aux carrefours ruraux ou sans signalisation. Notre objectif principal est la localisation des véhicules afin de reconstruire leurs trajectoires. Pour ce faire, l’estimation de la calibration extrinsèque entre les caméras est nécessaire afin d’effectuer des analyses à l’échelle métrique. Cette tâche s’avère très complexe dans notre configuration de déploiement. En effet la grande distance entre les caméras, la différence de vue et la forte présence de végétation, rendent inapplicables les méthodes de calibration qui requièrent la mise en correspondance d’images de mires. Il est donc nécessaire d’avoir une solution indépendante de la géométrie de la scène. Ainsi, nous proposons une méthode automatique reposant sur l’idée que les véhicules mobiles peuvent être utilisés comme objets dynamiques de calibration. Il s’agit d’une approche de type Structure à partir du Mouvement, découplée en l’estimation de la rotation extrinsèque à partir de points de fuite, suivie du calcul de la translation extrinsèque à l’échelle absolue par mise en correspondance de plans virtuels. Afin de généraliser notre méthode, nous adoptons le modèle de caméra sphérique sous l’hypothèse d’un mouvement plan. Des expérimentations conduites en laboratoire, puis dans des carrefours en Normandie, permettent de valider notre approche. Les paramètres extrinsèques sont alors directement exploités pour la trajectographie métrique des véhicules, en vue d’évaluer le risque et procéder à un diagnostic des intersections rurales. / Visual surveillance of dynamic objects at road intersections has been an active research topic in the computer vision and intelligent transportations systems communities, over the past decades. Several projects have been carried out in order to enhance the safety of drivers in the special context of intersections. Our extensive review of related studies revealedthat most roadside systems are based on monocular vision and provide output results generally in the image domain. In this thesis, we introduce a non-intrusive, wide-baseline stereoscopic system composed of fisheye cameras, perfectly suitable for rural or unsignalized intersections. Our main goal is to achieve vehicle localization and metric trajectory estimation in the world frame. For this, accurate extrinsic calibration is required to compute metric information. But the task is quite challenging in this configuration, because of the wide-baseline, the strong view difference between the cameras, and the important vegetation. Also, pattern-based methods are hardly feasible without disrupting the traffic. Therefore, we propose a points-correspondence-free solution. Our method is fully-automatic and based on a joint analysis of vehicles motion and appearance, which areconsidered as dynamic calibration objects. We present a Structure-from-Motion approach decoupled into the estimation of the extrinsic rotation from vanishing points, followed by the extrinsic translation at scale from a virtual-plane matching strategy. For generalization purposes we adopt the spherical camera model under the assumption of planar motion. Extensive experiments both in the lab and at rural intersections in Normandy allow to validate our work, leading to accurate vehicle motion analysis for risk assessment and safety diagnosis at rural intersections.
2

Construction de modèles 3D à partir de données vidéo fisheye : application à la localisation en milieu urbain / Construction of 3D models from fisheye video data—Application to the localisation in urban area

Moreau, Julien 07 June 2016 (has links)
Cette recherche vise à la modélisation 3D depuis un système de vision fisheye embarqué, utilisée pour une application GNSS dans le cadre du projet Predit CAPLOC. La propagation des signaux satellitaires en milieu urbain est soumise à des réflexions sur les structures, altérant la précision et la disponibilité de la localisation. L’ambition du projet est (1) de définir un système de vision omnidirectionnelle capable de fournir des informations sur la structure 3D urbaine et (2) de montrer qu’elles permettent d’améliorer la localisation.Le mémoire expose les choix en (1) calibrage automatique, (2) mise en correspondance entre images, (3) reconstruction 3D ; chaque algorithme est évalué sur images de synthèse et réelles. De plus, il décrit une manière de corriger les réflexions des signaux GNSS depuis un nuage de points 3D pour améliorer le positionnement. En adaptant le meilleur de l’état de l’art du domaine, deux systèmes sont proposés et expérimentés. Le premier est un système stéréoscopique à deux caméras fisheye orientées vers le ciel. Le second en est l’adaptation à une unique caméra.Le calibrage est assuré à travers deux étapes : l’algorithme des 9 points adapté au modèle « équisolide » couplé à un RANSAC, suivi d’un affinement par optimisation Levenberg-Marquardt. L’effort a été porté sur la manière d’appliquer la méthode pour des performances optimales et reproductibles. C’est un point crucial pour un système à une seule caméra car la pose doit être estimée à chaque nouvelle image.Les correspondances stéréo sont obtenues pour tout pixel par programmation dynamique utilisant un graphe 3D. Elles sont assurées le long des courbes épipolaires conjuguées projetées de manière adaptée sur chaque image. Une particularité est que les distorsions ne sont pas rectifiées afin de ne pas altérer le contenu visuel ni diminuer la précision. Dans le cas binoculaire il est possible d’estimer les coordonnées à l’échelle. En monoculaire, l’ajout d’un odomètre permet d’y arriver. Les nuages successifs peuvent être calés pour former un nuage global en SfM.L’application finale consiste dans l’utilisation du nuage 3D pour améliorer la localisation GNSS. Il est possible d’estimer l’erreur de pseudodistance d’un signal après multiples réflexions et d’en tenir compte pour une position plus précise. Les surfaces réfléchissantes sont modélisées grâce à une extraction de plans et de l’empreinte des bâtiments. La méthode est évaluée sur des paires d’images fixes géo-référencées par un récepteur bas-coût et un récepteur GPS RTK (vérité terrain). Les résultats montrent une amélioration de la localisation en milieu urbain. / This research deals with 3D modelling from an embedded fisheye vision system, used for a GNSS application as part of CAPLOC project. Satellite signal propagation in urban area implies reflections on structures, impairing localisation’s accuracy and availability. The project purpose is (1) to define an omnidirectional vision system able to provide information on urban 3D structure and (2) to demonstrate that it allows to improve localisation.This thesis addresses problems of (1) self-calibration, (2) matching between images, (3) 3D reconstruction ; each algorithm is assessed on computer-generated and real images. Moreover, it describes a way to correct GNSS signals reflections from a 3D point cloud to improve positioning. We propose and evaluate two systems based on state-of-the-art methods. First one is a stereoscopic system made of two sky facing fisheye cameras. Second one is the adaptation of the former to a single camera.Calibration is handled by a two-steps process: the 9-point algorithm fitted to “equisolid” model coupled with a RANSAC, followed by a Levenberg-Marquardt optimisation refinement. We focused on the way to apply the method for optimal and repeatable performances. It is a crucial point for a system composed of only one camera because the pose must be estimated for every new image.Stereo matches are obtained for every pixel by dynamic programming using a 3D graph. Matching is done along conjugated epipolar curves projected in a suitable manner on each image. A distinctive feature is that distortions are not rectified in order to neither degrade visual content nor to decrease accuracy. In the binocular case it is possible to estimate full-scale coordinates.In the monocular case, we do it by adding odometer information. Local clouds can be wedged in SfM to form a global cloud.The end application is the usage of the 3D cloud to improve GNSS localisation. It is possible to estimate and consider a signal pseudodistance error after multiple reflections in order to increase positioning accuracy. Reflecting surfaces are modelled thanks to plane and buildings trace fitting. The method is evaluated on fixed image pairs, georeferenced by a low-cost receiver and a GPS RTK receiver (ground truth). Study results show the localisation improvement ability in urban environment.

Page generated in 0.0846 seconds