• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 41
  • 17
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 228
  • 228
  • 61
  • 36
  • 36
  • 35
  • 31
  • 27
  • 21
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A population approach to systems of Izhikevich neurons: can neuron interaction cause bursting?

Xie, Rongzheng 29 April 2020 (has links)
In 2007, Modolo and colleagues derived a population density equation for a population of Izhekevich neurons. This population density equation can describe oscillations in the brain that occur in Parkinson’s disease. Numerical simulations of the population density equation showed bursting behaviour even though the individual neurons had parameters that put them in the tonic firing regime. The bursting comes from neuron interactions but the mechanism producing this behaviour was not clear. In this thesis we study numerical behaviour of the population density equation and then use a combination of analysis and numerical simulation to analyze the basic qualitative behaviour of the population model by means of a simplifying assumption: that the initial density is a Dirac function and all neurons are identical, including the number of inputs they receive, so they remain as a point mass over time. This leads to a new ODE model for the population. For the new ODE system, we define a Poincaré map and then to describe and analyze it under conditions on model parameters that are met by the typical values adopted by Modolo and colleagues. We show that there is a unique fixed point for this map and that under changes in a bifurcation parameter, the system transitions from fast tonic firing, through an interval where bursting occurs, the number of spikes decreasing as the bifurcation parameter increases, and finally to slow tonic firing. / Graduate
82

Developing fixed-point photography methodologies for assessing post-fire mountain fynbos vegetation succession as a tool for biodiversity management

Alkalei, Osama January 2020 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) - MSc (Biodiv and Cons Biol) / Areas of high biodiversity and complex species assemblages are often difficult to manage and to set up meaningful monitoring and evaluations programmes. Mountain Fynbos is such an ecosystem and in the Cape of Good Hope (part of the Table Mountain National Park) plant biodiversity over the last five decades has been in decline. The reasons are difficult to speculate since large herbivores, altered fire regimes and even climate change could be contributors to this decline which has been quantified using fixed quadrats and standard cover-abundance estimates based on a Braun-Blanquet methodology. To provide more detailed data that has more resolution in terms of identifying ecological processes, Fixed-Point Repeat Photography has been presented as a management “solution”. However, photography remains a difficult method to standardize subjects and has certain operational limitations.
83

Věty o pevném bodě v teorii diferenciálních rovnic / Fixed point theorems in the theory of differential equations

Zelina, Michael January 2020 (has links)
This thesis is devoted to show various applications of fixed point theorems on dif- ferential equations. In the beginning we use a notion of topological degree to derive several fixed points theorems, primarily Brouwer, Schauder and Kakutani-Ky Fan the- orem. Then we apply them on a wide range of relatively simple problems from ordinary and partial differential equations (ode and pde). Finally, we take a look on a few more complex problems. First is an existence of a solution to the model of mechanical os- cillator with non-monotone dependence of both displacement and velocity. Second is a solution to so called Gause predator-prey model with a refuge. The last one is cer- tain partial differential equation with a constraint which determines maximal monotone graph. 1
84

The Moduli Space of Polynomial Maps and Their Fixed-Point Multipliers / 多項式写像のモジュライ空間とその固定点における微分係数

Sugiyama, Toshi 23 July 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13201号 / 論理博第1560号 / 新制||理||1635(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 宍倉 光広, 教授 泉 正己, 教授 國府 寛司 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
85

Implementation of Low-Bit Rate Audio Codec, Codec2, in Verilog on Modern FPGAS

Sampath Kumar, Santhiya 30 April 2020 (has links)
No description available.
86

A Self-Contained Review of Thompson's Fixed-Point-Free Automorphism Theorem

Sracic, Mario F. 19 June 2014 (has links)
No description available.
87

An FPGA Implementation of Large-Scale Image Orthorectification

Shaffer, Daniel Alan 29 May 2018 (has links)
No description available.
88

Fixed-Point Image Orthorectification Algorithms for Reduced Computational Cost

French, Joseph Clinton 17 May 2016 (has links)
No description available.
89

The Computational Kleinman-Newton Method in Solving Nonlinear Nonquadratic Control Problems

Kang, Jinghong 28 April 1998 (has links)
This thesis deals with non-linear non-quadratic optimal control problems in an autonomous system and a related iterative numerical method, the Kleinman-Newton method, for solving the problem. The thesis proves the local convergence of Kleinman-Newton method using the contraction mapping theorem and then describes how this Kleinman-Newton method may be used to numerically solve for the optimal control and the corresponding solution. In order to show the proof and the related numerical work, it is necessary to review some of earlier work in the beginning of Chapter 1 [Zhang], and to introduce the Kleinman-Newton method at the end of the chapter. In Chapter 2 we will demonstrate the proof. In Chapter 3 we will show the related numerical work and results. / Ph. D.
90

Topological and Computational Models for Fuzzy Metric Spaces via Domain Theory

RICARTE MORENO, LUIS-ALBERTO 23 December 2013 (has links)
This doctoral thesis is devoted to investigate the problem of establishing connections between Domain Theory and the theory of fuzzy metric spaces, in the sense of Kramosil and Michalek, by means of the notion of a formal ball, and then constructing topological and computational models for (complete) fuzzy metric spaces. The antecedents of this research are mainly the well-known articles of A. Edalat and R. Heckmann [A computational model for metric spaces, Theoret- ical Computer Science 193 (1998), 53-73], and R. Heckmann [Approximation of metric spaces by partial metric spaces, Applied Categorical Structures 7 (1999), 71-83], where the authors obtained nice and direct links between Do- main Theory and the theory of metric spaces - two crucial tools in the study of denotational semantics - by using formal balls. Since every metric induces a fuzzy metric (the so-called standard fuzzy metric), the problem of extending Edalat and Heckmann's works to the fuzzy framework arises in a natural way. In our study we essentially propose two di erent approaches. For the rst one, valid for those fuzzy metric spaces whose continuous t-norm is the minimum, we introduce a new notion of fuzzy metric completeness (the so-called standard completeness) that allows us to construct a (topological) model that includes the classical theory as a special case. The second one, valid for those fuzzy metric spaces whose continuous t-norm is greater or equal than the Lukasiewicz t-norm, allows us to construct, among other satisfactory results, a fuzzy quasi-metric on the continuous domain of formal balls whose restriction to the set of maximal elements is isometric to the given fuzzy metric. Thus we obtain a computational model for complete fuzzy metric spaces. We also prove some new xed point theorems in complete fuzzy metric spaces with versions to the intuitionistic case and the ordered case, respec- tively. Finally, we discuss the problem of extending the obtained results to the asymmetric framework. / Ricarte Moreno, L. (2013). Topological and Computational Models for Fuzzy Metric Spaces via Domain Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34670

Page generated in 0.2858 seconds