Spelling suggestions: "subject:"fixedsource problems"" "subject:"dietsource problems""
1 |
Formulações espectronodais em cálculos neutrônicos multidimensionaisPicoloto, Camila Becker January 2015 (has links)
In this work, an analytical approach is used along with nodal schemes for the solution of xed source two-dimensional neutron transport problems, in Cartesian geometry, de ned in heterogeneous medium, with anisotropic scattering. The methodology is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric angular quadrature set. One-dimensional equations for the averaged angular uxes are obtained by transverse integration of the original problem. Such equations are solved by the ADO method. Explicit expressions in spatial variables are derived for averaged uxes in each region in which the domain is subdivided. The solution in each region is coupled with that of its neighbouring regions to provide the solution in the whole domain, without resorting to using iterative methods. As usual in nodal schemes, auxiliary equations are needed. Here two di erent treatments were given to this issue: one based on relations between the unknown ows in the contours of the regions and the average angular uxes, and another in which these ows are approximated by polynomials of order zero being in this case, incorporated into the source term. Numerical results were compared with available literature showing the solution preserve the computational e ciency which has been a good feature of the ADO method when applied to different problems. / Neste trabalho, uma abordagem analítica é utilizada juntamente com esquemas nodais na resolução de problemas bidimensionais de transporte de nêutrons de fonte fixa, em geometria cartesiana, definidos em meio heterogêneo, com espalhamento anisotrópico. A metodologia proposta é desenvolvida a partir da versão em ordenadas discretas da equação de transporte bidimensional, juntamente com o esquema de quadratura simétrica de nível. As equações em ordenadas discretas são integradas transversalmente, originando equações unidimensionais para os fluxos angulares médios. Tais equações unidimensionais são resolvidas pelo método ADO (Analytical Discrete Ordinates). Expressões explícitas nas variáveis espaciais são derivadas para os fluxos angulares médios em cada região em que o domínio foi subdividido. A solução em cada região é acoplada às regiões vizinhas, para fornecer a solução no domínio todo, sem a utilização de métodos iterativos. Como usual em esquemas nodais, equações auxiliares são necessárias, recebendo neste estudo dois tratamentos distintos: um em que os fluxos desconhecidos nos contornos das regiões assumem relações de proporcionalidade, com os fluxos angulares médios; e, outro, em que esses fluxos são aproximados por polinômios de ordem zero sendo, nesse caso, incorporados ao termo fonte. Resultados numéricos obtidos e comparados com disponíveis na literatura mostram a viabilidade da formulação, mantendo a eficiência computacional já verificada no tratamento de outros problemas, com o uso do método ADO.
|
2 |
Formulações espectronodais em cálculos neutrônicos multidimensionaisPicoloto, Camila Becker January 2015 (has links)
In this work, an analytical approach is used along with nodal schemes for the solution of xed source two-dimensional neutron transport problems, in Cartesian geometry, de ned in heterogeneous medium, with anisotropic scattering. The methodology is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric angular quadrature set. One-dimensional equations for the averaged angular uxes are obtained by transverse integration of the original problem. Such equations are solved by the ADO method. Explicit expressions in spatial variables are derived for averaged uxes in each region in which the domain is subdivided. The solution in each region is coupled with that of its neighbouring regions to provide the solution in the whole domain, without resorting to using iterative methods. As usual in nodal schemes, auxiliary equations are needed. Here two di erent treatments were given to this issue: one based on relations between the unknown ows in the contours of the regions and the average angular uxes, and another in which these ows are approximated by polynomials of order zero being in this case, incorporated into the source term. Numerical results were compared with available literature showing the solution preserve the computational e ciency which has been a good feature of the ADO method when applied to different problems. / Neste trabalho, uma abordagem analítica é utilizada juntamente com esquemas nodais na resolução de problemas bidimensionais de transporte de nêutrons de fonte fixa, em geometria cartesiana, definidos em meio heterogêneo, com espalhamento anisotrópico. A metodologia proposta é desenvolvida a partir da versão em ordenadas discretas da equação de transporte bidimensional, juntamente com o esquema de quadratura simétrica de nível. As equações em ordenadas discretas são integradas transversalmente, originando equações unidimensionais para os fluxos angulares médios. Tais equações unidimensionais são resolvidas pelo método ADO (Analytical Discrete Ordinates). Expressões explícitas nas variáveis espaciais são derivadas para os fluxos angulares médios em cada região em que o domínio foi subdividido. A solução em cada região é acoplada às regiões vizinhas, para fornecer a solução no domínio todo, sem a utilização de métodos iterativos. Como usual em esquemas nodais, equações auxiliares são necessárias, recebendo neste estudo dois tratamentos distintos: um em que os fluxos desconhecidos nos contornos das regiões assumem relações de proporcionalidade, com os fluxos angulares médios; e, outro, em que esses fluxos são aproximados por polinômios de ordem zero sendo, nesse caso, incorporados ao termo fonte. Resultados numéricos obtidos e comparados com disponíveis na literatura mostram a viabilidade da formulação, mantendo a eficiência computacional já verificada no tratamento de outros problemas, com o uso do método ADO.
|
3 |
Formulações espectronodais em cálculos neutrônicos multidimensionaisPicoloto, Camila Becker January 2015 (has links)
In this work, an analytical approach is used along with nodal schemes for the solution of xed source two-dimensional neutron transport problems, in Cartesian geometry, de ned in heterogeneous medium, with anisotropic scattering. The methodology is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric angular quadrature set. One-dimensional equations for the averaged angular uxes are obtained by transverse integration of the original problem. Such equations are solved by the ADO method. Explicit expressions in spatial variables are derived for averaged uxes in each region in which the domain is subdivided. The solution in each region is coupled with that of its neighbouring regions to provide the solution in the whole domain, without resorting to using iterative methods. As usual in nodal schemes, auxiliary equations are needed. Here two di erent treatments were given to this issue: one based on relations between the unknown ows in the contours of the regions and the average angular uxes, and another in which these ows are approximated by polynomials of order zero being in this case, incorporated into the source term. Numerical results were compared with available literature showing the solution preserve the computational e ciency which has been a good feature of the ADO method when applied to different problems. / Neste trabalho, uma abordagem analítica é utilizada juntamente com esquemas nodais na resolução de problemas bidimensionais de transporte de nêutrons de fonte fixa, em geometria cartesiana, definidos em meio heterogêneo, com espalhamento anisotrópico. A metodologia proposta é desenvolvida a partir da versão em ordenadas discretas da equação de transporte bidimensional, juntamente com o esquema de quadratura simétrica de nível. As equações em ordenadas discretas são integradas transversalmente, originando equações unidimensionais para os fluxos angulares médios. Tais equações unidimensionais são resolvidas pelo método ADO (Analytical Discrete Ordinates). Expressões explícitas nas variáveis espaciais são derivadas para os fluxos angulares médios em cada região em que o domínio foi subdividido. A solução em cada região é acoplada às regiões vizinhas, para fornecer a solução no domínio todo, sem a utilização de métodos iterativos. Como usual em esquemas nodais, equações auxiliares são necessárias, recebendo neste estudo dois tratamentos distintos: um em que os fluxos desconhecidos nos contornos das regiões assumem relações de proporcionalidade, com os fluxos angulares médios; e, outro, em que esses fluxos são aproximados por polinômios de ordem zero sendo, nesse caso, incorporados ao termo fonte. Resultados numéricos obtidos e comparados com disponíveis na literatura mostram a viabilidade da formulação, mantendo a eficiência computacional já verificada no tratamento de outros problemas, com o uso do método ADO.
|
Page generated in 0.0441 seconds