• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL SIMULATIONS OF PREMIXED FLAMES OF MULTI COMPONENT FUELS/AIR MIXTURES AND THEIR APPLICATIONS

Salem, Essa KH I J 01 January 2019 (has links)
Combustion has been used for a long time as a means of energy extraction. However, in the recent years there has been further increase in air pollution, through pollutants such as nitrogen oxides, acid rain etc. To solve this problem, there is a need to reduce carbon and nitrogen oxides through lean burning, fuel dilution and usage of bi-product fuel gases. A numerical analysis has been carried out to investigate the effectiveness of several reduced mechanisms, in terms of computational time and accuracy. The cases were tested for the combustion of hydrocarbons diluted with hydrogen, syngas, and bi-product fuel in a cylindrical combustor. The simulations were carried out using the ANSYS Fluent 19.1. By solving the conservations equations, several global reduced mechanisms (2-5-10 steps) were obtained. The reduced mechanisms were used in the simulations for a 2D cylindrical tube with dimensions of 40 cm in length and 2.0 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air and syngas blends to visualize the flame characteristics. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios (lean to rich) and adding small amounts of hydrogen into the fuel blends. The changes in temperature, radical formation, burning velocities and the reduction in NOx and CO2 emissions were observed. The results compared to experimental data to study the changes. Once the results were within acceptable range, different fuels compositions were used for the premixed combustion through adding H2/CO/CO2 by volume and changing the equivalence ratios and preheat temperatures, in the fuel blends. The results on flame temperature, shape, burning velocity and concentrations of radicals and emissions were observed. The flame speed was calculated by finding the surface area of the flame, through the mass fractions of fuel components and products conversions that were simulated through the tube. The area method was applied to determine the flame speed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity had neglectable effects on the burning velocity. The highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio and highest flame speed was obtained for Blast Furnace Gas (BFG) at elevated preheat temperature and methane-hydrogen fuels blends in the combustor. The results included; reduction in CO2 and NOx emissions, expansion of the flammable limit, under the condition of having the same laminar flow. The usage of diluted natural gases, syngas and bi-product gases provides a step in solving environmental problems and providing efficient energy.
2

Effect of hydrogen addition and burner diameter on the stability and structure of lean, premixed flames

Kaufman, Kelsey Leigh 01 May 2014 (has links)
Low swirl burners (LSBs) have gained popularity in heating and gas power generation industries, in part due to their proven capacity for reducing the production of NOx, which in addition to reacting to form smog and acid rain, plays a central role in the formation of the tropospheric ozone layer. With lean operating conditions, LSBs are susceptible to combustion instability, which can result in flame extinction or equipment failure. Extensive work has been performed to understand the nature of LSB combustion, but scaling trends between laboratory- and industrial-sized burners have not been established. Using hydrogen addition as the primary method of flame stabilization, the current work presents results for a 2.54 cm LSB to investigate potential effects of burner outlet diameter on the nature of flame stability, with focus on flashback and lean blowout conditions. In the lean regime, the onset of instability and flame extinction have been shown to occur at similar equivalence ratios for both the 2.54 cm and a 3.81 cm LSB and depend on the resolution of equivalence ratios incremented. Investigations into flame structures are also performed. Discussion begins with a derivation for properties in a multicomponent gas mixture used to determine the Reynolds number (Re) to develop a condition for turbulent intensity similarity in differently-sized LSBs. Based on this requirement, operating conditions are chosen such that the global Reynolds number for the 2.54 cm LSB is within 2% of the Re for the 3.81 cm burner. With similarity obtained, flame structure investigations focus on flame front curvature and flame surface density (FSD). As flame structure results of the current 2.54 cm LSB work are compared to results for the 3.81 cm LSB, no apparent relationship is shown to exist between burner diameter and the distribution of flame surface density. However, burner diameter is shown to have a definite effect on the flame front curvature. In corresponding flow conditions, a decrease in burner diameter results a broader distribution of curvature and an increased average curvature, signifying that compared to the larger 3.81 cm LSB, the flame front of the smaller burner contains tighter, smaller scale wrinkling.

Page generated in 0.0658 seconds