Spelling suggestions: "subject:"flame propagation"" "subject:"blame propagation""
11 |
Development of an Experimental Facility for Flame Speed Measurements in Powdered AerosolsVissotski, Andrew John 2012 August 1900 (has links)
Research with heterogeneous mixtures involving solid particulate in closed, constant-volume bombs is typically limited by the powder dispersion technique. This work details the development of an experimental apparatus that promotes ideal conditions, namely a quiescent atmosphere and uniform particle distribution, for measuring laminar, heterogeneous flame propagation. In this thesis, two methods of dispersing particles are investigated. In the first, heterogeneous mixtures are made in a secondary vessel that is connected to the main experiment. Particles are dispersed into the secondary vessel by adapting a piston-driven particle injector, which has been shown to produce uniform particle distributions. The heterogeneous mixture is then transferred to the main bomb facility and ignited after laminar conditions are achieved. In the second method of dispersion, particles are directly injected into the main experimental facility using a strong blast of compressed air. As with the first approach, enough time is given (~4 minutes) for the mixture to become quiescent before ignition occurs. An extinction diagnostic is also applied to the secondary mixing vessel as well as the primary experimental facility (for both dispersion methods) to provide a qualitative understanding of the dispersion technique. To perform this diagnostic a 632.8-nm, 5-mW Helium-Neon (HeNe) laser was employed. Aluminum nano-particles with an average diameter of 100 nm were used in this study. It was found that for typical dust loadings produced with both dispersion techniques, a pure dust-air system would not ignite due to the current spark ignition system. Thus, a hybrid mixture of Al/CH4/O2/N2 was employed to achieve the project goal of demonstrating a system for controlled laminar flame speed measurements in aerosol mixtures. With the hybrid mixture, the combustion characteristics were studied both with and without the presence of nano-Al particles. Based on the experimental results, the simplicity of the "direct-injection" methodology compared to that of the "side-vessel" is desirable and will be further investigated as a viable alternative, or improvement, to the side-vessel technology.
|
12 |
微小重力下での直線液滴列に沿った火炎伝ぱ (第2報, 火炎伝ぱ速度特性)梅村, 章, UMEMURA, Akira 08 1900 (has links)
No description available.
|
13 |
微小重力下での直線燃料液滴列に沿った火炎伝ぱ (第1報, 液滴間火炎伝ぱ様式マップの作成)梅村, 章, UMEMURA, Akira 08 1900 (has links)
No description available.
|
14 |
二次元非定常予混合火炎に関する素反応機構による数値解析 (予混合火炎構造を支配する物質量としての反応進行度とその勾配の妥当性)加藤, 敏宏, KATOH, Toshihiro, 林, 直樹, HAYASHI, Naoki, 山下, 博史, YAMASHITA, Hiroshi, 中村, 祐二, NAKAMURA, Yuji, 山本, 和弘, YAMAMOTO, Kazuhiro 25 December 2005 (has links)
No description available.
|
15 |
ランキン渦流中での予混合火炎伝播に与える渦核半径の影響に関する数値解析YAMAMOTO, Kazuhiro, SHINODA, Masahisa, YAMASHITA, Hiroshi, KONDOU, Shuuji, 山本, 和弘, 篠田, 昌久, 山下, 博史, 近藤, 周司 January 2008 (has links)
No description available.
|
16 |
旋回流が流入する細い円管中での予混合火炎伝播挙動に関する数値解析永井, 秀和, NAGAI, Hidekazu, 山下, 博史, YAMASHITA, Hiroshi 05 1900 (has links)
No description available.
|
17 |
Sensibilité, sévérité et spécificités des explosions de mélanges hybrides gaz/vapeurs/poussières / Sensibility, severity and specificities of gas/vapor-dust explosionsKhalili, Imad 11 April 2012 (has links)
La sensibilité et la sévérité d'explosion des différents mélanges gaz/vapeur-poussière ont été étudiées grâce à des dispositifs standards (sphère de 20 L, tube de Hartmann). Les spécificités des explosions de mélanges hybrides gaz/poussière ont été mises en évidence. En fait, même pour des concentrations de gaz inférieures à la limite inférieure d'explosivité (LIE), la probabilité d'inflammation et la gravité d'explosion peuvent être considérablement augmentées, ce qui permettra notamment de conduire à de grands changements dans la détermination des zones ATEX. Il a été, par exemple, démontré que ces mélanges peuvent être explosifs même lorsque la concentration en poudre et la concentration en vapeur sont respectivement en dessous de la concentration minimale explosive et de la LIE. En outre, des effets de synergie ont été observés et la vitesse de montée en pression de mélanges hybrides peut être supérieure à celles des gaz purs. Les origines de ces spécificités ne doivent pas être recherchées dans la modification d'un paramètre unique, mais peuvent probablement être attribuées aux effets combinés sur l'hydrodynamique (propagation de la flamme), le transfert thermique et la cinétique de combustion. Des expériences ont été menées afin de souligner l'importance de chaque contribution. Basé sur des schémas cinétiques classiques à coeur rétrécissant prenant en compte des diverses contraintes lors d'une réaction non-catalytique de gaz/solide et sur des modèles de combustion homogène pour les gaz, un modèle a été développé pour représenter l'évolution temporelle de la pression d'explosion pour ces mélanges / The explosion sensitivity and severity of various gas/vapor-dust mixtures have been studied thanks to specifically modified apparatuses based on a 20 L sphere and a Hartmann tube. The specificities of gas/dust hybrid mixtures explosions have been highlighted. In fact, even for gas concentrations lower than the lower explosivity limit (LEL), the ignition probability and the explosion severity can be greatly increased, which will notably lead to great changes in the Ex zones determination. For instance, it has been shown that such mixtures can be explosive when both the dust and gas concentrations are below their respective minimum explosive concentration and LEL. Moreover, synergistic effects have been observed and the rate of pressure rise of hybrid mixtures can be greater than those of the pure gases themselves. The origins of these specificities should not be sought in the modification of a single parameter, but could probably be attributed to combined impacts on hydrodynamics (flame propagation), thermal transfer and combustion kinetics. Experiments have been carried out in order to underline the significance of each contribution. Based on classical shrinking core models taking into account the various limitations during a non-catalytic gas/solid reaction and on homogeneous combustion for gases, a model has been developed to represent the time evolution of the explosion pressure for such mixtures
|
18 |
Análise qualitativa do ciclo real e tempo de combustão em um motor padrão ASTM-CFR operando com mistura de gasolina e etanol hidratadoMalfatti, Laércio January 2009 (has links)
A duração da combustão tem implicação direta na determinação do trabalho negativo no ciclo motor. A duração da combustão tem relação inversa com a velocidade de propagação da chama. Assim, quanto maior a velocidade de propagação da chama, menor a duração da combustão. Além disto, a duração da combustão está relacionada com a relação volumétrica de compressão, com a razão de mistura e com o tipo de combustível, entre outros fatores. Neste sentido, quanto maior a velocidade de queima da mistura ar-combustível, menor o trabalho negativo no ciclo. Neste contexto, foram ensaiadas 3 relações de compressão e 3 razões de mistura, para 6 combustíveis de composição conhecida: gasolina comum tipo C, álcool etílico hidratado combustível (AEHC) e AEHC adicionado à gasolina comum tipo C nas proporções de 20%, 40%, 60% e 80%. A variação da pressão no interior da câmara de combustão, para todos os combustíveis, e a posição da centelha de ignição foram determinadas com a utilização da base angular e com variação da relação volumétrica de compressão e da razão de mistura. O diagrama , para fins de cálculo de área, foi traçado por pós-processamento. Os resultados obtidos indicam que a duração da combustão aumenta com o aumento da razão de mistura e diminui com o aumento da relação volumétrica de compressão, para todos os combustíveis ensaiados. Verificou-se que a amplitude da pressão, no interior da câmara de combustão, se comporta inversamente à duração da combustão. Mostrou-se que o aumento da razão de mistura implica na redução do trabalho líquido entregue ao êmbolo ao longo de todo o ciclo do motor. Opostamente ocorre com o aumento da relação volumétrica de compressão, que implica no aumento do trabalho líquido por ciclo. Concluiu-se que o máximo valor para o trabalho líquido ao longo de todo o ciclo foi obtido para a maior relação volumétrica de compressão (8:1) e a menor razão de mistura (λ = 0,9). O combustível que representou este resultado foi o álcool etílico hidratado combustível adicionado à gasolina comum tipo C em 80% (AEHC80). O mínimo valor para o trabalho líquido, ao longo de todo o ciclo foi obtido, para a menor relação volumétrica de compressão (6:1) e a maior razão de mistura dos ensaios (λ = 1,1). O combustível que representou este resultado foi o álcool etílico hidratado combustível (AEHC). / The duration of the combustion is directly implicative on determining the negative work of the motor cycle. The duration of the combustion has an inverse relation with the flame propagation speed. Thus, the higher propagation of the flame, the shorter duration of the combustion. Besides that, the duration of the combustion is related to the relation of compression, to the air/fuel relation and to the type of fuel, among other factors. In this way, the higher burning speed of the air/fuel mixture, the smallest negative work in the cycle. In such a context, there were tried three compression relations and three mixture ratios for six fuels of know compositions: ordinary gasoline C type, combustible hydrated ethyl alcohol and combustible hydrated ethyl alcohol added to ordinary gasoline C type in the proportions of 20%, 40%, 60% and 80%. The pressure variation inside the combustion chamber, for all fuels, and the position of the ignition spark were determined using the angular base and with variation of the compression relation and the mixture ratio. The diagram, for area calculation, was traced by post processing. The obtained results indicate that the combustion duration increases with the rising of the mixture ratio and decreases with the rising of the compression relation, for all the tried combustibles. It was found that the pressure amplitude inside the combustion chamber behaves inversely to the combustion duration behavior. It was shown that the rising of the mixture ratio implies on the reduction of the net work delivered by the piston all through the cycle of the motor. The opposite occurs with the rising of the compression relation, that implies on the increase of the net work by cycle. It was concluded that the maximum value for the net work all through the cycle was obtained for the higher compression relation (8:1) and the least mixture ratio of the tests (λ = 0,9). The combustible that achieved such a result was the combustible hydrated ethyl alcohol added to ordinary gasoline C type in 80%. The least value for the net work all through the cycle was obtained by the least compression relation (6:1) and the highest mixture ratio of the tests (λ = 1,1). The fuel that achieved that result was the combustible hydrated ethyl alcohol.
|
19 |
Numerical simulation of ignition in aeronautical combustion chambers / Simulation numérique de l'allumage dans les chambres de combustion aéronautiquesBarre, David 30 January 2014 (has links)
Pour des raisons évidentes d’opération et de sécurité, l’allumage est un problème essentiel dans les moteurs aéronautiques. La conception d’une chambre de combustion de turbine à gaz intègre de multiples objectifs contradictoires, l’un d’entre eux étant un allumage ou ré-allumage efficace des brûleurs. Parmi les paramètres dont disposent les ingénieurs dans la phase d’optimisation du design, le nombre de systèmes d’injection de carburant et leur espacement sont des points cruciaux qui doivent être fixés dès le début. En effet, de tels choix ont non seulement un impact sur le coût de fabrication et la taille de la chambre mais ils affectent aussi l’efficacité d’un moteur ainsi que ses caractéristiques d’allumage. Afin d’améliorer les connaissances relatives au processus l’allumage dans des moteurs réels, la recherche actuelle combine des expériences fondamentales de plus en plus complexes et des simulations numériques de haute fidélité. Ces actions se concentrent d’une part sur les premiers instants où le noyau de flamme apparaît et d’autre part sur la phase de propagation entre les différents brûleurs. Ces deux phases sont capitales mais restent difficiles à étudier simultanément. Le premier objectif de cette thèse vise à évaluer les modèles SGE sur un seul brûleur expérimental situé au CORIA (France) pour mettre en place une méthodologie fiable afin de réaliser numériquement une séquence d’allumage dans des conditions d’opération réelles et équivalentes aux premiers instants. Une telle étude met en jeu plusieurs phénomènes tels que les écoulement swirlés, l’allumage, l’extinction, la propagation de flamme et les interactions flamme/turbulence. Tous ces processus et mécanismes interagissent et augmentent de façon significative le niveau de difficulté, notamment pour modéliser la combustion turbulente d’un tel allumage. Ces modèles requièrent donc d’être évalués précisément. Ensuite, ce travail examine par la simulation numérique la phase de propagation en utilisant les expériences réalisées sur une chambre composée de plusieurs injecteurs. La comparaison des séquences d’allumage obtenues numériquement avec celles des données expérimentales montre que la SGE reproduit les bonnes tendances et s’avère prédictive. D’un point de vue global, les caractéristiques de propagation du front de flamme en direction des injecteurs voisins sont bien capturées par le numériquemontrant desmodes de propagation identiques à ceux obtenus expérimentalement (radial ou axial) et des temps d’allumage similaires. Pour finir, l’analyse détaillée de ces données numériques a permis d’identifier les mécanismes principaux qui sont à l’origine des différents modes de propagation. / For evident operational and safety reasons, ignition is a key feature of aeronautical gas turbine applications. In fact the design of a gas turbine combustion chamber imposes multiple contradicting objectives one of them being efficient ignition or re-ignition. Among all the parameters available to the engineers, the number of fuel injection systems and their spacing are crucial elements, that must be fixed early on in the design phase. Such choices however not only impact the manufacturing cost and size of the combustor but they also affect the operability of the engine as well as its ignition. To improve knowledge of the ignition process occurring in real engines, current research combines fundamental and increasingly complex experiments complemented by high fidelity numerical simulations. These actions focus on the one hand on the initial instants where the first flame kernel appears as well as the follow-on instants corresponding to the light-around phase or burner to burner flame propagation phase. Both phases are clearly important but are difficult to study simultaneously. The first purpose of this thesis aims at assessing LES models on a single experimental burner located at CORIA (France) to provide a reliable numerical methodology to achieve an ignition sequence in real engines. Indeed, various phenomena are involved in such numerical studies dedicated to real aeronautical combustion chambers and all need to be reproduced by numerics: swirling flows, ignition, quenching, flame propagation, flame/turbulence interactions. All of these processes interact and clearly raise the level of difficulty notably in terms of turbulent combustion modeling of an ignition transient. Having assessed the method on a single burner configuration, the work then investigates the second phase, using a multi-injector experiment simulated by LES to study the flame propagation during ignition. The comparison of numerical fully transient ignition sequences with experimental data shows that LES recovers features found in the experiment. Global events such as the propagation of the flame front to neighboring swirlers are well captured and correct propagation modes (radial or axial) as well as correct overall ignition time delay are obtained. Finally the detailed analysis of LES data allows to identify the driving mechanisms governing each of these propagation modes.
|
20 |
Simulations aux grandes échelles de la phase d'allumage dans un moteur fusée cryotechnique / Large eddy simulations of the ignition phase in a cryogenic rocket engineRocchi, Jean-Philippe 12 September 2014 (has links)
À ses débuts, la conquête spatiale a pu bénéficier des rivalités politiques de la Guerre Froide pour se développer rapidement sans réellement se soucier des efforts économiques à fournir. Aujourd’hui, de nombreux pays subissent le revers de la médaille de cette course effrénée : pour maintenir une flotte de lanceurs viable économiquement, les différentes agences spatiales doivent faire face à un dilemme opposant la minimisation des coûts de lancement à la maximisation de leur fiabilité. Dans cette logique d’optimisation, les industriels présents dans ce processus de réflexion se tournent vers la simulation numérique pour tenter d’améliorer leurs connaissances des technologies existantes, en particulier sur les zones d’ombres inaccessibles aux mesures expérimentales. Dans la lignée de plusieurs études théoriques et expérimentales, ces travaux visent à apporter un éclairage nouveau sur les phénomènes se produisant lors de l’allumage d’un moteur fusée cryotechnique. Ces recherches se tournent dans un premier temps vers l’amélioration de la modélisation de la flamme H2/O2. La validation d’une cinétique chimique réduite initialement destinée à la combustion H2/Air permet de justifier son utilisation lors de l’allumage. Puis, le développement d’un modèle de combustion turbulente pour le régime de flamme de diffusion est mené dans le but de palier aux limitations du modèle de flamme épaissie. Enfin, une analyse du cas où les régimes prémélangés et non-prémélangés sont présents tous les deux permet d’étudier un moyen simple de les distinguer même dans le cas où ils sont très proches. Dans un second temps, ces travaux se tournent vers l’étude de l’allumage dans un moteur fusée cryotechnique. Après avoir analysé de manière globale le calcul d’une séquence simplifiée, deux études plus approfondies sont menées pour investiguer, d’une part, les différents régimes de combustion, et d’autre part, les différents modes de propagation de la flamme propres à cette configuration. / The beginning of the conquest of space received benefits from the political competition of the Cold War and consequently grow quickly without considering the cost of these advances. The end of this unrestrained technological race brings to light the other side of the coin. In order to keep a fleet of launch vehicles up-to-date with the market, spatial agencies must answer a question : how can the cost of a launch be reduced without decreasing its efficiency. Through the use of numerical simulation, industrial partners may investigate this logic of optimisation. This solution might provide improvement in the knowledge of existing technologies, especially when experimental measurements are impossible. Following the path of theoretical and experimental results, this study aims to present a new view about the different processes occurring during the ignition of a space rocket engine. First, this research will present an improvement of the modelling of H2/O2 flame. The validation of a reduced chemical scheme basically developed for H2/Air will justify its use during the ignition sequence. Then, a turbulent combustion model for non-premixed flames will be developed in order to compensate the limits of the thickened flame model implemented in AVBP. Additionally, a study of both premixed and non-premixed regimes in a closed position will bring a simple method to distinguish them for a further active use. Secondly, this research will study the ignition process of a representative cryogenic space rocket chamber. The calculation of a simplified ignition sequence will be globally investigated. Finally, two-detailed analysis will lead to different combustion regimes and flame spreading processes
|
Page generated in 0.0898 seconds