• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the storage, dispensing, and transfer of flammable and combustible liquid flavorings at the City Brewing Company, LLC

Bilse, Michael J. January 2002 (has links) (PDF)
Thesis--PlanB (M.S.)--University of Wisconsin--Stout, 2002. / Includes bibliographical references.
2

Hot surface ignition temperature of dust layers with and without combustible additives

Park, Haejun. January 2006 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: Hot surface ignition temperature; self-heating; combustible liquid additives. Includes bibliographical references (leaves 134-135).
3

The identification of ignitable liquids in the presence of pyrolysis products generation of a pyrolysis product database /

Castelbuono, Joseph. January 2008 (has links)
Thesis (M.S.)--University of Central Florida, 2008. / Adviser: Michael Sigman. Includes bibliographical references (p. 118-122).
4

The explosive flammability of liquid grain fumigants

Bulger, Carl Sigvold January 2011 (has links)
Digitized by Kansas State University Libraries
5

Biodegration of Benzene

Kim, Kimyoung January 1987 (has links)
This study was conducted to estimate the kinetic constants of benzene-acclimated biomass at optimum conditions and investigate the effectiveness of soil inoculation to expedite the biodegradation of benzene. A complete-mix, bench-scale, continuous-flow, activated-sludge reactor was used to develop organisms capable of utilizing benzene as a sole carbon and energy source. Settled pond water was used as seeding inocula and about 2000 mg/I of MLSS was maintained at the steady state with the MCRT of 7 days. The culture was used to inoculate the experimental bottle equipped with a sampling port. A series of different initial concentrations of benzene were established in the bottles for the batch growth tests. Samples were drawn every hour and the optical densities were measured at 540 nm in order to assess the growth rate. A nonlinear least-squares regression technique was employed to estimate the constants of the Haldane equation (an inhibition function). µ<sub>m</sub> was 0.31 hr⁻¹, K₂ was 1.36 mg/I and K<sub>i</sub>, was 1.50x10¹⁵' mg/I in the range of 14 - 491 mg/I of benzene. A small amount of the acclimated bacteria was added to the normal moist subsoil containing 100 mg/I of benzene and enough mineral nutrients. The soils were put in septum-capped glass bottles and incubated in the dark for a month. The benzene concentration in the autoclaved bottles did not decrease during the incubation period while that in the inoculated bottles was reduced to zero within 4 days and that in the uninoculated bottles was reduced to zero within 13 days. / M.S.
6

Monitoring, characterizing, and preventing microbial degradation of ignitable liquids on soil

Turner, Dee Ann January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Organic-rich substrates such as soil provide an excellent carbon source for bacteria. However, hydrocarbons such as those found in various ignitable liquids can also serve as a source of carbon to support bacterial growth. This is problematic for fire debris analysis as samples may be stored at room temperature for extended periods before they are analyzed due to case backlog. As a result, selective loss of key components due to bacterial metabolism can make identifying and classifying ignitable liquid residues by their chemical composition and boiling point range very difficult. The ultimate goal of this project is to preserve ignitable liquid residues against microbial degradation as efficiently and quickly as possible. Field and laboratory studies were conducted to monitor microbial degradation of gasoline and other ignitable liquids in soil samples. In addition to monitoring degradation in potting soil, as a worst case scenario, the effect of soil type and season were also studied. The effect of microbial action was also compared to the effect of weathering by evaporation (under nitrogen in the laboratory and by the passive headspace analysis of the glass fragments from the incendiary devices in the field studies). All studies showed that microbial degradation resulted in the significant loss of n-alkanes and lesser substituted alkylbenzenes predominantly and quickly, while more highly substituted alkanes and aromatics were not significantly affected. Additionally, the residential soil during the fall season showed the most significant loss of these compounds over the course of 30 days. To combat this problem, a chemical solution is to be immediately applied to the samples as they are collected. Various household and commercial products were tested for their efficacy at low concentrations to eliminate all living bacteria in the soil. Triclosan (2% (w/v) in NaOH) proved to be the most effective at preserving ignitable liquid residues for at least 30 days.

Page generated in 0.0597 seconds