• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Observation and Modeling of Traffic Operations at Intersections in Malfunction Flash Mode

Jenior, Peter M. 09 April 2007 (has links)
When a traffic signals malfunction monitoring unit detects a problem with a traffic signal such as the simultaneous display of green indications to conflicting movements or loss of power to some signal heads, the signal is automatically placed into flash mode as a safety precaution. Signals can have either red/red malfunction flash mode or yellow/red malfunction flash mode, and the mode cannot change by time of day or day of week. This study analyzed traffic operation at 34 instances of yellow/red malfunction flash and 9 instances of red/red malfunction flash in the Atlanta, Georgia area. Many of these instances were during high volume periods. A high level of driver confusion exists at malfunction flash intersections. The rate at which through major street drivers (i.e. those facing a flashing yellow signal) stopped exceeded 75 percent at some yellow/red flash intersections. This creates a safety hazard for other major street drivers who are not expecting vehicles to stop, and for minor street drivers who cannot tell what type of control is being presented to cross traffic or do not understand that vehicles are not required to stop when approaching a flashing yellow indication. Furthermore, high stopping rates at a flashing yellow signal eliminate many of the operational benefits that yellow/red flash is assumed to have over red/red flash. Based on the findings of this study, the use of red/red flash should be the primary flash mode and possibly used exclusively. Requiring all vehicles to stop will improve safety conditions and not have large operational impacts at intersections where a majority of major street vehicles are already stopping at a flashing yellow signal. Yellow/red flash may be an acceptable malfunction flash mode at the intersection of a very large street and a very small street, but additional measures would be required at these intersections to address potential driver confusion.
12

On Heat and Paper : From Hot Pressing to Impulse Technology

Lucisano, Marco Francesco Carlo January 2002 (has links)
<p>Impulse technology is a process in which water is removedfrom a wet paper web by the combined action of mechanicalpressure and intense heat. This results in increased dewateringrates, increased smoothness on the roll side of the sheet, andincreased density. Although the potential benefits of impulsepressing have been debated over the past thirty years, itsindustrial acceptance has been prevented by web delamination,which is defined as a reduction in the z-directional strengthof paper.</p><p>This thesis deals with the mechanism of heat transfer withphase change during impulse pressing of wet paper. The resultsof four complementary experimental studies suggest that littleor no steam is formed in an impulse nip prior to the point ofmaximum applied load. As the nip is unloaded and the hydraulicpressure decreases, hot liquid water flashes to steam. Weadvance the argument that the force expressed upon flashing canbe used to displace liquid water, in a mechanism similar tothat originally proposed by Wahren. Additionally, modelexperiments performed in a novel experimental facility suggestthat the strength of flashing-assisted displacement dewateringcan be maximized by controlling the direction of steam venting.If this solution could be exploited in a commercially viableimpulse press, delamination would cease to be an issue ofconcern.</p><p>The thesis includes a study of the web structure ofdelaminated paper. Here, we characterized delaminated paper bythe changes in transverse permeability and cross-sectionalsolidity profiles measured as a function of pressingtemperature. We found no evidence that wet pressing and impulsepressing induced stratification in non-delaminated sheets andconcluded that the parabolic solidity profiles observed weredue to capillary forces present during drying. Further, thepermeability of mechanically compressed never-dried samples wasfound to be essentially constant for pressing temperatureslower than the atmospheric boiling point of water and toincrease significantly at higher pressing temperatures. Wepropose this to be a result of damage to the cell wall materialdue to flashing of hot liquid water in the fiber walls andlumina.</p><p>Finally, we present a method and an apparatus formeasurement of the thermal properties of water-saturated paperwebs at temperatures and pressures of interest for commercialhigh-intensity processes. After validation, the method wassuccessfully applied to measure the thermal conductivity,thermal diffusivity and volumetric heat capacity ofwater-saturated blotter paper as functions of temperature andsolids content. Here, we found that the thermal conductivityincreased with solids content in the range from 30%\ to 55%,which is in conflict with the commonly stated assumptions of adecreasing trend. We propose that this discrepancy could be dueto the thermal conductivity of air-free fibers wetted byunpressable water only, being significantly different from thatof dry cellulose.</p>
13

A count data model with endogenous covariates : formulation and application to roadway crash frequency at intersections

Born, Kathryn Mary 24 March 2014 (has links)
This thesis proposes an estimation approach for count data models with endogenous covariates. The maximum approximate composite marginal likelihood inference approach is used to estimate model parameters. The modeling framework is applied to predict crash frequency at urban intersections in Irving, Texas. The sample is drawn from the Texas Department of Transportation crash incident files for the year 2008. The results highlight the importance of accommodating endogeneity effects in count models. In addition, the results reveal the increased propensity for crashes at intersections with flashing lights, intersections with crest approaches, and intersections that are on frontage roads. / text
14

Wind Uplift Resistance of Roof Edge Components

Alassafin, Wassim 18 March 2013 (has links)
A roof is a critical envelope of a building. It provides protection for the building interior against various weather elements, such as snow, rain and wind. Roofs are normally composed of several components such as insulation, barriers and water proofing membrane. A roof edge is the perimetric part of a roof that serves as termination for roof components. In generic terms, a roof edge system is composed of a parapet with metal components, such as coping and cleat/clip. The edge system is typically subjected to negative pressure (suction) due to wind flow over the roof. Therefore, a roof edge is the front-line of defence against wind action. To develop testing standards and design guidelines for roof edges, a project referred as REST (Roof Edge Systems and Technologies) has been initiated in cooperation with the NSERC (Natural Sciences and Engineering Research Council). For the REST project, this thesis contributes in two folds: wind design procedure and the development of an experimental method for testing roof edge components. The present thesis analyzes the wind load calculation procedures as per the National Building Code of Canada (NBCC) and American Society of Civil Engineers (ASCE). This has been achieved by taking side-by-side cities along Canada-USA border; wind load calculations were performed to demonstrate the differences and similarities between the NBCC and ASCE. As a part of the current contribution, the existing version of the online Wind-RCI Calculator was updated from NBCC2005 to NBCC2010 provisions. Towards the experimental contribution, the current study presents a new experimental method for testing and evaluating wind uplift resistance of roof edge systems by simulating wind loads in a lab environment on full-scale mock-ups. The test apparatus had a gust simulator device to mimic wind gusting (dynamic loading). This research investigates three widely used edge systems in North America: Continuous Cleat Configuration (CCC), Discontinuous Cleat Configuration (DCC) and Anchor Clip Configuration (ACC). Preliminary data show that CCC edge system has higher resistance in comparison to DCC and ACC edge systems. The experiments also revealed the need for experimental setup enhancement. Additional investigations by using the enhanced experimental setup were performed on both CCC and DCC edge systems.
15

Simulation studies of Brownian motors

Kuwada, Nathan James, 1983- 09 1900 (has links)
xii, 122 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Biological molecular motors achieve directed motion and perform work in an environment dominated by thermal noise and in most cases incorporate thermally driven motion into the motor process. Inspired by bio-molecular motors, many other motor systems that incorporate thermal motion have been developed and studied. These motors are broadly referred to as Brownian motors. This dissertation presents simulation studies of two particular Brownian motors, the feedback-controlled flashing ratchet and an artificial molecular motor concept, the results of which not only drive experimental considerations but also illuminate physical behaviors that may be applicable to other Brownian motors. A flashing ratchet rectifies the motion of diffusive particles using a time dependent, asymmetric potential energy landscape, and the transport speed of the ratchet can be increased if information about the particle distribution is incorporated as feedback in the time dependency of the landscape. Using a Langevin Dynamics simulation, we compare two implementations of feedback control, a discrete algorithm and a continuous algorithm, and find that the discrete algorithm is less sensitive to fluctuations in the particle distribution. We also model an experimental system with time delay and find that the continuous algorithm can be improved by adjusting the feedback criteria to react to the expected state of the system after the delay time rather than the real-time state of the system. Motivated by the desire to understand bio-molecular linear stepping motors, we present a bottom-up approach of designing an artificial molecular motor. We develop a coarse-grained Molecular Dynamics model that is used to understand physical contributions to the diffusive stepping time of the motor and discover that partially reducing the diffusional space from 3D to 1D can dramatically increase motor speed. We also develop a stochastic model based on the classical Master equation for the system and explore the sensitivity of the motor to currently undetermined experimental parameters. We find that a reduced diffusional stepping time is critical to maintain motor attachment for many successive steps and explore an experimental design effect that leads to motor misstepping. / Committee in charge: Stephen Kevan, Chairperson, Physics; Heiner Linke, Member, Physics; John Toner, Member, Physics; Raghuveer Parthasarathy, Member, Physics; Marina Guenza, Outside Member, Chemistry
16

Wind Uplift Resistance of Roof Edge Components

Alassafin, Wassim January 2013 (has links)
A roof is a critical envelope of a building. It provides protection for the building interior against various weather elements, such as snow, rain and wind. Roofs are normally composed of several components such as insulation, barriers and water proofing membrane. A roof edge is the perimetric part of a roof that serves as termination for roof components. In generic terms, a roof edge system is composed of a parapet with metal components, such as coping and cleat/clip. The edge system is typically subjected to negative pressure (suction) due to wind flow over the roof. Therefore, a roof edge is the front-line of defence against wind action. To develop testing standards and design guidelines for roof edges, a project referred as REST (Roof Edge Systems and Technologies) has been initiated in cooperation with the NSERC (Natural Sciences and Engineering Research Council). For the REST project, this thesis contributes in two folds: wind design procedure and the development of an experimental method for testing roof edge components. The present thesis analyzes the wind load calculation procedures as per the National Building Code of Canada (NBCC) and American Society of Civil Engineers (ASCE). This has been achieved by taking side-by-side cities along Canada-USA border; wind load calculations were performed to demonstrate the differences and similarities between the NBCC and ASCE. As a part of the current contribution, the existing version of the online Wind-RCI Calculator was updated from NBCC2005 to NBCC2010 provisions. Towards the experimental contribution, the current study presents a new experimental method for testing and evaluating wind uplift resistance of roof edge systems by simulating wind loads in a lab environment on full-scale mock-ups. The test apparatus had a gust simulator device to mimic wind gusting (dynamic loading). This research investigates three widely used edge systems in North America: Continuous Cleat Configuration (CCC), Discontinuous Cleat Configuration (DCC) and Anchor Clip Configuration (ACC). Preliminary data show that CCC edge system has higher resistance in comparison to DCC and ACC edge systems. The experiments also revealed the need for experimental setup enhancement. Additional investigations by using the enhanced experimental setup were performed on both CCC and DCC edge systems.
17

An investigation of female house mosquito (Culex pipiens) photo responses to male flashing wingbeat frequency

Stec, Helen 28 April 2022 (has links)
No description available.
18

Evaluating the Effectiveness of Conversion of Traditional Five Section Head Signal to Flashing Yellow Arrow (FYA) Signal

Almoshaogeh, Meshal 01 January 2014 (has links)
In the United States, there are two schemes of operating traffic signal controls for permitted protected left turns (PPLT) namely the traditional five-section head system (known as Dog-House) and the flashing yellow arrow system (FYA). Past studies have agreed that these controls lead to decrease the average delay per left turn vehicle, decrease the protected green time, increase the left turn capacity, and enhance the intersection overall operation. The flashing yellow arrow (FYA) has been approved by the Federal Highway Administration as the national standard for the PPLT operations at signalized intersections. So, the Florida Department of Transportation also approved this new system and they are extensively replacing the traditional system with the new system on the area of Central Florida (Lin, et al, 2010). Both these systems have been used for a long time and there are some studies that evaluated these systems but there are limited number of projects that evaluated and/or compared between the two PPLT systems from the operational perspective. The main goal of this research is to study the characteristics of traffic operations and evaluate the effectiveness of the conversion from five-section head signal to the FYA treatments at 13 intersections located in Orlando, Florida. To reach this goal, detailed data collection efforts were conducted at 13 selected intersections in the central Florida area and appropriate statistical tests were conducted using the Minitab 17 Software. Statistical tests were attempted to fit different new regression models that correlate delay and left turn volumes as response variables against a set of independent variables that included permitted green time, opposing volume, percent of trucks, time gaps, speed, and land use type. In addition to fitting the data to regression models, these models were also analyzed for the purpose of detecting any significant differences between the five-section head treatment and FYA treatment. The statistical differences of converting the five-section head system to FYA system were discussed. The results in this thesis agreed with some of the previous studies and did not agree with others. In general, the flashing yellow arrow system was found to enhance the intersection operation, increase the number of left turn vehicles, and reduce the delay. Also, some suggestions and recommendations were made based on this study results.
19

A Comparative Analysis of Different Dilemma Zone Countermeasures at Signalized Intersections based on Cellular Automaton Model

Wu, Yina 01 January 2014 (has links)
In the United States, intersections are among the most frequent locations for crashes. One of the major problems at signalized intersection is the dilemma zone, which is caused by false driver behavior during the yellow interval. This research evaluated driver behavior during the yellow interval at signalized intersections and compared different dilemma zone countermeasures. The study was conducted through four stages. First, the driver behavior during the yellow interval were collected and analyzed. Eight variables, which are related to risky situations, are considered. The impact factors of drivers' stop/go decisions and the presence of the red-light running (RLR) violations were also analyzed. Second, based on the field data, a logistic model, which is a function of speed, distance to the stop line and the lead/follow position of the vehicle, was developed to predict drivers' stop/go decisions. Meanwhile, Cellular Automata (CA) models for the movement at the signalized intersection were developed. In this study, four different simulation scenarios were established, including the typical intersection signal, signal with flashing green phases, the intersection with pavement marking upstream of the approach, and the intersection with a new countermeasure: adding an auxiliary flashing indication next to the pavement marking. When vehicles are approaching the intersection with a speed lower than the speed limit of the intersection approach, the auxiliary flashing yellow indication will begin flashing before the yellow phase. If the vehicle that has not passed the pavement marking before the onset of the auxiliary flashing yellow indication and can see the flashing indication, the driver should choose to stop during the yellow interval. Otherwise, the driver should choose to go at the yellow duration. The CA model was employed to simulate the traffic flow, and the logistic model was applied as the stop/go decision rule. Dilemma situations that lead to rear-end crash risks and potential RLR risks were used to evaluate the different scenarios. According to the simulation results, the mean and standard deviation of the speed of the traffic flow play a significant role in rear-end crash risk situations, where a lower speed and standard deviation could lead to less rear-end risk situations at the same intersection. High difference in speed are more prone to cause rear-end crashes. With Respect to the RLR violations, the RLR risk analysis showed that the mean speed of the leading vehicle has important influence on the RLR risk in the typical intersection simulation scenarios as well as intersections with the flashing green phases' simulation scenario. Moreover, the findings indicated that the flashing green could not effectively reduce the risk probabilities. The pavement marking countermeasure had positive effects on reducing the risk probabilities if a platoon's mean speed was not under the speed used for designing the pavement marking. Otherwise, the risk probabilities for the intersection would not be reduced because of the increase in the RLR rate. The simulation results showed that the scenario with the pavement marking and an auxiliary indication countermeasure, which adds a flashing indication next to the pavement marking, had less risky situations than the other scenarios with the same speed distribution. These findings suggested the effectiveness of the pavement marking and an auxiliary indication countermeasure to reduce both rear-end collisions and RLR violations than other countermeasures.
20

Analysis of Brick Veneer on Concrete Masonry Wall Subjected to In-plane Loads

Marziale, Stephen 26 August 2014 (has links)
No description available.

Page generated in 0.0654 seconds