Spelling suggestions: "subject:"flexible electrodes"" "subject:"lexible electrodes""
1 |
Enhanced Zinc Oxide and Graphene Nanostructures for Electronics and Sensing ApplicationsVerma, Ved P 12 July 2010 (has links)
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes.
Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ~5.7 cm 2/ V•s at low operation voltage of ~0.5 V with a sub threshold swing of ~85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (~10 6) and mobility (∼28 cm 2 /V•s). A bottom gated FET showed large hysteresis of ~5.0 to 8.0 V which was significantly reduced to ~1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ~46% and a minimum detection limit of ~1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases.
Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~1.1742 kΩ/sq sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
|
2 |
Dispositivos eletroquímicos flexíveis empregando papel pirolisado /Damasceno, Sergio January 2019 (has links)
Orientador: Carlos Cesar Bof Bufon / Resumo: Materiais de carbono obtidos por pirólise de celulose e biopolímeros sintéticos têm sido am-plamente investigados para aplicações no desenvolvimento de dispositivos eletrônicos. Eles apresentam excelentes propriedades elétricas, mas são extremamente frágeis. Então uma alter-nativa seria integrar esses materiais em elastômeros. Assim, para a contornar a fragilidade e a questão de adesão de materiais condutores em substratos alongáveis, neste trabalho é proposto um novo método de fabricação para desenvolvimento de dispositivos eletroquímicos. Inspira-do no sistema redox eficiente das plantas e que está firmemente aderido ao solo pela estrutura das raízes, foi desenvolvido um processo de retardo do fluxo capilar do polidimetilsiloxano (PDMS) na estrutura pirolisada modificada, de forma que fibras pirolisadas integradas no elas-tômero possam garantir adesão e estabilidade mecânica, e que parte delas fique exposta para possibilitar atividade eletroquímica na interface. Baseado no modelo matemático de Lucas-Washburn, as mudanças na superfície das fibras de papel por conta da adição de acetato de celulose e a diminuição do raio dos poros resulta no retardo do fluxo da solução polimérica viscosa na estrutura porosa. Como resultado foi obtida uma superfície de eletrodo de carbono altamente ativa para reações redox. Além disso, testes mecânicos com o dispositivo flexiona-do, dobrado, e alongado, demonstraram que uma deformação linear de até 75% do tamanho inicial não tem efeitos nas pr... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Cellulose and synthetic biopolymers derived carbon materials are extensively used for application in electronic field. They show excellent electrical properties but are extremely fragile and prone to crack. Then an alternative to address this challenge and the adhesion problem reported on literature, a new fabrication route for a flexible and stretchable electrochemical device is proposed. Inspired by trees redox system that is highly adhered on the ground and based on Lucas Wash-Burn model, the pyrolyzed paper is modified with cellulose acetate. Then, in a process named delayed capillary flow of elastomers the surface changes in paper fibers and the decrease in pore radius results in a delay on capillary flow of viscous polymer polydimethylsiloxane (PDMS) solution on its porous structure. As a result, a highly active carbon surface exposed on the top for redox reactions is produced, which shows a remarkable performance and is similar to tree leaves. Also, mechanical deformation studies on the new bendable, twistable, flexible, and stretchable device reveal a linear stretch up to 75%, without effects on its electrochemical properties. These mechanical properties are similar to tree roots highly adhered on the ground. The electrode working area was nanofunctionalized with polydopamine (PDA) that is used for anchoring redox mediators and improvement of wettability with unprecedent homogeneous spreading of liquids and development of self-collection liquid samples. This system is... (Complete abstract click electronic access below) / Mestre
|
3 |
MECHANOCHEMICAL EXFOLIATION OF GRAPHENE IN VOLATILE ORGANIC SOLVENTSMuhammed Ramazan Oduncu (12885026) 17 June 2022 (has links)
<p> </p>
<p>Graphene is a two-dimensional (2-D) sheet of <em>sp2</em> hybridized carbon atoms with extraordinary thermal, electrical, and mechanical properties. Among numerous sophisticated and costly synthesis techniques including chemical vapor deposition (CVD), SiC and microwave plasma; liquid-phase exfoliation (LPE) has been one of the most widely used techniques for low-cost and large scale graphene synthesis since it was first reported in 2008. LPE involves the use of liquid media to exfoliate graphite precursors directly into mono- or few-layered graphene. Stable dispersions of few-layered graphene are desirable for thin-film deposition on a large scale but are limited by the use of polar organic solvents with high boiling points and unfavorable toxicity profiles. This limitation can be overcome by milling and exfoliation of graphene nanoplatelets (GrNPs) in ethyl acetate (EtOAc) and acetone, volatile solvents with low toxicity profiles and modest environmental impact. Solvent-assisted grinding of pristine GrNPs on a horizontal ball mill followed by sonication produces concentrated suspensions up to 356 µg/mL that remain stable at room temperature for a minimum of 6 weeks without the addition of surfactants. Exfoliated graphene layers have an average thickness of 4.5 nm which corresponds to 10–12 layers of graphene on Si/SiO2 substrates. EtOAc and acetone-based dispersions of exfoliated graphene can be deposited uniformly using conventional airbrush equipment as low-boiling point solvents evaporates instantaneously after deposition. This deposition method also provides freedom regarding to target substrate and overcomes any substrate related limitations observed in other techniques. Practical demonstrations of spray-coated graphene films include (i) conductive surfaces with sheet resistance as low as 1 kΩ/sq, and (ii) solid contacts for disposable and low-cost nitrate-selective electrodes, with high reproducibility in the voltage readouts across multiple sensors.</p>
|
Page generated in 0.0887 seconds