• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 10
  • 2
  • Tagged with
  • 32
  • 32
  • 25
  • 25
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dynamic soil-structure interaction of reinforced concrete buried structures under the effect of dynamic loads using soil reinforcement new technologies. Soil-structure interaction of buried rigid and flexible pipes under geogrid-reinforced soil subjected to cyclic loads

Elshesheny, Ahmed January 2019 (has links)
Recent developments in constructions have heightened the need for protecting existing buried infrastructure. New roads and buildings may be constructed over already existing buried infrastructures e.g. buried utility pipes, leading to excessive loads threatening their stability and longevity. Additionally applied loads over water mains led to catastrophic damage, which result in severe damage to the infrastructure surrounding these mains. Therefore, providing protection to these existing buried infrastructure against increased loads due to new constructions is important and necessary. In this research, a solution was proposed and assessed, where the protection concept would be achieved through the inclusion process of geogrid-reinforcing layers in the soil cover above the buried infrastructure. The controlling parameters for the inclusion of geogrid-reinforcing layers was assessed experimentally and numerically. Twenty-three laboratory tests were conducted on buried flexible and rigid pipes under unreinforced and geogrid-reinforced sand beds. All the investigated systems were subjected to incrementally increasing cyclic loading, where the contribution of varying the burial depth of the pipe and the number of the geogrid-reinforcing layers on the overall behaviour of the systems was investigated. To further investigate the contribution of the controlling parameters in the pipe-soil systems performance, thirty-five numerical models were performed using Abaqus software. The contribution of increasing the amplitude of the applied cyclic loading, the number of the geogrid-reinforcing layers, the burial depth of the pipe and the unit-weight of the backfill soil was investigated numerically. The inclusion of the geogrid-reinforcing layers in the investigated pipe-soil systems had a significant influence on decreasing the transferred pressure to the crown of the pipe, generated strains along its crown, invert and spring-line, and its deformation, where reinforcing-layers sustained tensile strains. Concerning rigid pipes, the inclusion of the reinforcing-layers controlled the rebound that occurred in their invert deformation. With respect to the numerical investigation, increasing the number of the reinforcing-layers, the burial depth of the pipe and the unit-weight of the backfill soil had positive effect in decreasing the generated deformations, stresses and strains in the system, until reaching an optimum value for each parameter. Increasing the amplitude of the applied loading profile resulted in remarkable increase in the deformations, stresses and strains generated in the system. Moreover, the location of the maximum tensile strain generated in the soil was varied, as well as the reinforcing-layer, which suffered the maximum tensile strain. / Government of Egypt
32

Behaviour of buried pipes adjacent to ground voids under dynamic loading

Aljaberi, Mohammad S.A.A. January 2023 (has links)
Protection of buried pipes is a serious issue that concerns countries around the world. Therefore, there is a need for new soil improvement techniques such as geosynthetic materials installation to protect these pipes from damage. This study used large-scale laboratory tests to study the behaviour of buried pipes. A total of 22 large-scale tests were performed to study the behaviour of buried flexible HDPE pipes with and without void presence under the protection of the geogrid reinforcing layers subjected to incrementally increasing cyclic loading. The presence of voids located at the spring-line of the flexible buried pipes, led to a considerable increase in the soil surface settlement, pressure recorded at the pipe crown, spring-line and invert, pipe deformation and strain recorded in the pipe wall. Increasing the pipe burial depth contributed to significant reductions in the soil surface settlement, pressure recorded at the pipe crown and invert, pipe deformation and strain recorded in the pipe wall. However, the void presence limited the contribution of increasing the pipe burial depth. The inclusion of a geogrid reinforcing layer contributed to a considerable reduction in the soil surface settlement, pressure recorded at the pipe crown, spring-line and invert, pipe deformation and strain recorded in the pipe wall. The use of a combination of geogrid reinforcing layers and increasing the pipe burial depth contributed in diminishing the ground void presence effect, where better pressure distribution inside the system was achieved. Consequently, more protection was provided to the buried pipe.

Page generated in 0.0453 seconds