• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Redes neurais artificiais na predição de respostas e estimação de derivadas aerodinâmicas de aeronaves / Artificial neural networks for prediction of responses and estimation of aerodynamic derivatives of aircraft

Souza, Luciane de Fátima Rodrigues de 20 September 2007 (has links)
A área de dinâmica de aeronaves atingiu um alto nível de desenvolvimento e devido à crescente disponibilidade de computadores cada vez mais rápidos e com maior capacidade de processamento; a aplicação de técnicas numéricas de identificação nesta área também teve grande avanço. Este trabalho apresenta uma metodologia para predição de respostas de aeronaves dentro de envelopes de vôo pré-estabelecidos usando redes neurais recorrentes e uma metodologia para estimação das suas derivadas aerodinâmicas usando redes neurais feedforward. Para obter os conjuntos de dados para treinar as redes neurais, foi implementado um modelo não linear de dinâmica de vôo e simulado o comportamento de uma aeronave de combate em nove pontos de um envelope de vôo. Foram usadas as respostas simuladas correspondentes a quatro pontos para treinar a rede neural e depois disto, esta capturou satisfatoriamente a dinâmica da aeronave, identificando com grande sucesso as respostas do movimento longitudinal da aeronave por todo o envelope de vôo considerado. Após a simulação e identificação das respostas da aeronave dentro do envelope de vôo, é apresentada a resolução do problema inverso, ou seja, usando velocidades escalares e angulares da aeronave juntamente com seus dados geométricos como entradas para a rede neural feedforward, é obtido um modelo neural estimador de derivadas aerodinâmicas. Para mostrar a capacidade deste modelo neural estimador, este é aplicado na estimação das derivadas da aeronave simulada e também aplicado na estimação das derivadas aerodinâmicas da aeronave militar a jato Xavante AT-26 da Força Aérea Brasileira. Estas metodologias propostas reduzem custo de obtenção das derivadas aerodinâmicas e mostram a eficácia das redes neurais em estimar as respostas de aeronaves dentre de um envelope de vôo pré-definido. / The area of aircraft dynamics has reached a high level of development and due to the increasing availability of computers continuously faster and with bigger processing capacity, the application of numerical identification techniques in this area also had great advance. This work presents two methodologies, one for prediction of aircraft responses within a pre-established flight envelope using recurrent neural networks and another one for estimation of its aerodynamic derivatives using feedforward neural networks. To get data sets to train the neural networks, a combat aircraft flight dynamics non-linear model was implemented and simulated in nine points of the flight envelope to obtain its behavior. The simulated responses corresponding to a four points of the flight envelope were used to train the neural network and after that, it was possible to verify that this net satisfactorily captured the dynamics of the aircraft, identifying with great success the longitudinal motion responses of the aircraft at all the considered flight envelope positions. After the simulation and identification of the aircraft responses inside the flight envelope, the solution of the inverse problem is presented, i.e., using scalar and angular aircraft velocities together with its geometric data as input to the feedforward neural network, a neural estimator model of aerodynamic derivatives is obtained. In order to show the capacity of this neural estimator model, this model is applied to the estimation of the derivatives of the simulated aircraft as well as to the estimation of the aerodynamic derivatives of a brazilian air force military jet aircraft, the Xavante AT-26. These proposed methodologies reduce the cost of obtaining the aerodynamic derivatives and show the estimation effectiveness of the neural networks to estimate the responses of an aircraft inside a pre-defined flight envelope.
2

Reference Governor for Flight Envelope Protection in an Autonomous Helicopter using Model Predictive Control / Referensövervakning för flygenvelopsskydd i en autonom helikopter via modellbaserad prediktionseglering

Carlsson, Victor, Sunesson, Oskar January 2014 (has links)
In this master’s thesis we study how Model Predictive Control (MPC) can be fitted into an existing control system to handle state constraints. We suggest the use of reference governing based on the predictive control methodology. The platform for the survey is Saabs unmanned helicopter Skeldar. We develop and investigate different Reference Governor(RG) formulations that can be used together with the already existing stabilizing control system. These different setups show various features regarding model predictive control. One setup is complemented with a pre-filter to prevent aggressive actuator control in response to set-point changes, while the other is developed to handle this in the MPC framework. We also show that one of these RGs can be extended to guarantee stability and convergence. Implementation and real time requirements are also considered in this thesis. For this two different QP-solvers have been used for online solving of the optimization problem that arises from the MPC formulations. For evaluation and analysis the solutions are implemented in an advanced simulation environment developed at Saab and in a hardware-in-the-loop avionics test rig for the Skeldar system.
3

Redes neurais artificiais na predição de respostas e estimação de derivadas aerodinâmicas de aeronaves / Artificial neural networks for prediction of responses and estimation of aerodynamic derivatives of aircraft

Luciane de Fátima Rodrigues de Souza 20 September 2007 (has links)
A área de dinâmica de aeronaves atingiu um alto nível de desenvolvimento e devido à crescente disponibilidade de computadores cada vez mais rápidos e com maior capacidade de processamento; a aplicação de técnicas numéricas de identificação nesta área também teve grande avanço. Este trabalho apresenta uma metodologia para predição de respostas de aeronaves dentro de envelopes de vôo pré-estabelecidos usando redes neurais recorrentes e uma metodologia para estimação das suas derivadas aerodinâmicas usando redes neurais feedforward. Para obter os conjuntos de dados para treinar as redes neurais, foi implementado um modelo não linear de dinâmica de vôo e simulado o comportamento de uma aeronave de combate em nove pontos de um envelope de vôo. Foram usadas as respostas simuladas correspondentes a quatro pontos para treinar a rede neural e depois disto, esta capturou satisfatoriamente a dinâmica da aeronave, identificando com grande sucesso as respostas do movimento longitudinal da aeronave por todo o envelope de vôo considerado. Após a simulação e identificação das respostas da aeronave dentro do envelope de vôo, é apresentada a resolução do problema inverso, ou seja, usando velocidades escalares e angulares da aeronave juntamente com seus dados geométricos como entradas para a rede neural feedforward, é obtido um modelo neural estimador de derivadas aerodinâmicas. Para mostrar a capacidade deste modelo neural estimador, este é aplicado na estimação das derivadas da aeronave simulada e também aplicado na estimação das derivadas aerodinâmicas da aeronave militar a jato Xavante AT-26 da Força Aérea Brasileira. Estas metodologias propostas reduzem custo de obtenção das derivadas aerodinâmicas e mostram a eficácia das redes neurais em estimar as respostas de aeronaves dentre de um envelope de vôo pré-definido. / The area of aircraft dynamics has reached a high level of development and due to the increasing availability of computers continuously faster and with bigger processing capacity, the application of numerical identification techniques in this area also had great advance. This work presents two methodologies, one for prediction of aircraft responses within a pre-established flight envelope using recurrent neural networks and another one for estimation of its aerodynamic derivatives using feedforward neural networks. To get data sets to train the neural networks, a combat aircraft flight dynamics non-linear model was implemented and simulated in nine points of the flight envelope to obtain its behavior. The simulated responses corresponding to a four points of the flight envelope were used to train the neural network and after that, it was possible to verify that this net satisfactorily captured the dynamics of the aircraft, identifying with great success the longitudinal motion responses of the aircraft at all the considered flight envelope positions. After the simulation and identification of the aircraft responses inside the flight envelope, the solution of the inverse problem is presented, i.e., using scalar and angular aircraft velocities together with its geometric data as input to the feedforward neural network, a neural estimator model of aerodynamic derivatives is obtained. In order to show the capacity of this neural estimator model, this model is applied to the estimation of the derivatives of the simulated aircraft as well as to the estimation of the aerodynamic derivatives of a brazilian air force military jet aircraft, the Xavante AT-26. These proposed methodologies reduce the cost of obtaining the aerodynamic derivatives and show the estimation effectiveness of the neural networks to estimate the responses of an aircraft inside a pre-defined flight envelope.
4

Návrh křídla letounu UAV v kategorii do 600 kg / Wing design of UAV aircraft

Chabada, Martin January 2021 (has links)
The main aim of the this diploma thesis is the wing design of the UAV aircraft, including the appropriate material choice, calculation of the wing load and also strength analysis. Other goals include the design of the location and volume of fuel tanks, as well as the design of wingspan reduction after landing.
5

Návrh přední časti trupu letounu TL-4000 a zástavby motoru / Design of fore part of fuselage and engine mounting of TL-4000 aircraft

Löffelmann, František January 2014 (has links)
The thesis solves mounting of Continental IO-55ON to four-seat all composite aeroplane. Weight analysis of weights carried by engine mounting was done and loads of mounting and nose gear attached directly to mounting was computed according to CS-23 regulation. Mounting was designed based on affordable information about similar aeroplanes and it was sized due to Nastran/Patran system strength analysis. Further reinforcing of fire wall, engine covers and forms for their manufacture was suggested.
6

Remotorizace lehkého sportovního letounu / Light sport aircraft engine replacement

Totogashvili, Nikolozi January 2020 (has links)
Práce je zaměřena na nalezení optimálního a nového motoru pro PS-28 Sport Cruiser, pro větší výkon a tah. Rotax 912 ULS je v současné době jediným motorem, který klient této práce (Czech Aircraft Works, dále jen CZAW) instaluje do letadel Sport Cruiser. Tato čtyřválcová pohonná jednotka má maximální vzletový výkon 100 hp. Pro náročnější zákazníky bude nabídka rozšířena o Lycoming O-235-L2C, což je také čtyřválcový motor s maximálním vzletovým výkonem 118 koní. Což znamená, že společnost bude mít větší možnost a klient bude mnohem spokojenější.
7

Remotorizace lehkého sportovního letounu / Light sport aircraft engine replacement

Totogashvili, Nikolozi January 2020 (has links)
Práce je zaměřena na nalezení optimálního a nového motoru pro PS-28 Sport Cruiser, pro větší výkon a tah. Rotax 912 ULS je v současné době jediným motorem, který klient této práce (Czech Aircraft Works, dále jen CZAW) instaluje do letadel Sport Cruiser. Tato čtyřválcová pohonná jednotka má maximální vzletový výkon 100 hp. Pro náročnější zákazníky bude nabídka rozšířena o Lycoming O-235-L2C, což je také čtyřválcový motor s maximálním vzletovým výkonem 118 koní. Což znamená, že společnost bude mít větší možnost a klient bude mnohem spokojenější.
8

Odhad Letových Parametrů Malého Letounu / Light Airplane Flight Parameters Estimation

Dittrich, Petr Unknown Date (has links)
Tato práce je zaměřena na odhad letových parametrů malého letounu, konkrétně letounu Evektor SportStar RTC. Pro odhad letových parametrů jsou použity metody "Equation Error Method", "Output Error Method" a metody rekurzivních nejmenších čtverců. Práce je zaměřena na zkoumání charakteristik aerodynamických parametrů podélného pohybu a ověření, zda takto odhadnuté letové parametry odpovídají naměřeným datům a tudíž vytvářejí předpoklad pro realizaci dostatečně přesného modelu letadla. Odhadnuté letové parametry jsou dále porovnávány s a-priorními hodnotami získanými s využitím programů Tornado, AVL a softwarovéverze sbírky Datcom. Rozdíly mezi a-priorními hodnotami a odhadnutými letovými paramatery jsou porovnány s korekcemi publikovanými pro subsonické letové podmínky modelu letounu F-18 Hornet.

Page generated in 0.0462 seconds