Spelling suggestions: "subject:"ighlight loads"" "subject:"highlight loads""
1 |
Určení aerodynamických charakteristik VOP letounu CFD metodou / Determination of Aerodynamic Characteristics of Horizontal Tail using CFD MethodsŠrůtek, Michal January 2008 (has links)
The diploma thesis describes computation empennage maneuvering flight loads in CFD code Fluent V6 and comparison with computational code AVL.
|
2 |
Pilot modelling for airframe loads analysisLone, M. Mudassir 01 1900 (has links)
The development of large lightweight airframes has resulted in what used to be high frequency
structural dynamics entering the low frequency range associated with an aircraft’s rigid body dynamics.
This has led to the potential of adverse interactions between the aeroelastic effects and
flight control, especially unwanted when incidents involving failures or extreme atmospheric disturbances
occur. Moreover, the pilot’s response in such circumstances may not be reproducible
in simulators and unique to the incident. The research described in this thesis describes the
development of a pilot model suitable for the investigation of the effects of aeroelasticity on
manual control and the study of the resulting airframe loads. After a review of the state-ofthe-
art in pilot modelling an experimental approach involving desktop based pilot-in-the-loop
simulation was adopted together with an optimal control based control-theoretic pilot model.
The experiments allowed the investigation of manual control with a nonlinear flight control
system and the derivation of parameter bounds for single-input-single-output pilot models. It
was found that pilots could introduce variations of around 15 dB at the resonant frequency
of the open loop pilot-vehicle-system. Sensory models suitable for the simulation of spatial
disorientation effects were developed together with biomechanical models necessary to capture
biodynamic feedthrough effects. A detailed derivation and method for the application of the
modified optimal control pilot model, used to generate pilot control action, has also been shown
in the contexts of pilot-model-in-the-loop simulations of scenarios involving an aileron failure
and a gust encounter. It was found that manual control action particularly exacerbated horizontal
tailplane internal loads relative to the limit loads envelope. Although comparisons with
digital flight data recordings of an actual gust encounter showed a satisfactory reproduction and
highlighted the adverse affects of fuselage flexibility on manual control, it also pointed towards
the need for more incident data to validate such simulations.
|
3 |
Pilot modelling for airframe loads analysisLone, Mohammad Mudassir January 2013 (has links)
The development of large lightweight airframes has resulted in what used to be high frequency structural dynamics entering the low frequency range associated with an aircraft’s rigid body dynamics. This has led to the potential of adverse interactions between the aeroelastic effects and flight control, especially unwanted when incidents involving failures or extreme atmospheric disturbances occur. Moreover, the pilot’s response in such circumstances may not be reproducible in simulators and unique to the incident. The research described in this thesis describes the development of a pilot model suitable for the investigation of the effects of aeroelasticity on manual control and the study of the resulting airframe loads. After a review of the state-ofthe- art in pilot modelling an experimental approach involving desktop based pilot-in-the-loop simulation was adopted together with an optimal control based control-theoretic pilot model. The experiments allowed the investigation of manual control with a nonlinear flight control system and the derivation of parameter bounds for single-input-single-output pilot models. It was found that pilots could introduce variations of around 15 dB at the resonant frequency of the open loop pilot-vehicle-system. Sensory models suitable for the simulation of spatial disorientation effects were developed together with biomechanical models necessary to capture biodynamic feedthrough effects. A detailed derivation and method for the application of the modified optimal control pilot model, used to generate pilot control action, has also been shown in the contexts of pilot-model-in-the-loop simulations of scenarios involving an aileron failure and a gust encounter. It was found that manual control action particularly exacerbated horizontal tailplane internal loads relative to the limit loads envelope. Although comparisons with digital flight data recordings of an actual gust encounter showed a satisfactory reproduction and highlighted the adverse affects of fuselage flexibility on manual control, it also pointed towards the need for more incident data to validate such simulations.
|
4 |
Transformation of In-Flight Measured Loads to a Fatigue Test Spectrum / Omvandling av uppmätta flygprovlaster till lastspektra för utmattningsprovDümig, Patrick January 2022 (has links)
Fatigue is a well-recognized issue in lightweight and high-performance aircraft structures. As fatigue failures have led to serious accidents and caused significant economic impact in the past, design against fatigue is crucial. Fatigue testing of full-scale aircraft as well as components is an important tool for the advance identification of potential fatigue issues in both new and operational aircraft. Furthermore, coupon testing is used extensively to obtain allowables for materials and structural details to be used in the design process. To obtain accurate results from fatigue testing, not only the test object but also the used load spectrum must accurately represent reality. If the aircraft is operational, an accurate load spectrum can be obtained by measuring the loads in-flight during a sufficiently long period of normal operation of the aircraft. However, the in-flight measured loads data contains an extraordinarily large number of cycles, resulting in long and uneconomical test durations. This thesis aims to propose a method for the selection of an optimal filtering level for fatigue test spectra developed from in-flight measured loads. The thesis also discusses and recommends methods for in-flight measurement of loads, cycle counting as well as damage evaluation using a crack-growth approach. Furthermore, ways to validate the proposed method and its practical application are discussed. An example filtering study is conducted using four different specimens chosen to represent typical structural details of aircraft. The study uses real in-flight measured loads of a light aircraft and also discusses temperature compensation of the loads data. The effect of filtering on fatigue damage is evaluated using crack-growth simulations conducted at a range of filtering and stress levels. The results show that a remarkable reduction of testing time is possible and as many as 99 % of all cycles in the studied flight load history can be discarded without significantly reducing fatigue damage. The allowable filtering level is shown to differ between the specimens and the different stages of fatigue crack growth. In addition, the applied stress level is found to have a consistent effect on the allowable filtering level.
|
Page generated in 0.0279 seconds