• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of aeroelasticity in tow tank strain gauge measurements on a NACA 0015 airfoil

Li, Sihao January 1993 (has links)
No description available.
2

On the Experimental Determination of Damping of Metals and Calculation of Thermal Stresses in Solidifying Shells

Åberg, Jonas January 2006 (has links)
This thesis explores experimentally and theoretically two different aspects of the properties and behaviour of metals: their ability to damp noise and their susceptibility to crack when solidifying. The first part concerns intrinsic material damping, and is motivated by increased demands from society for reductions in noise emissions. It is a material’s inherent ability to reduce its vibration level, and hence noise emission, and transform its kinetic energy into a temperature increase. To design new materials with increased intrinsic material damping, we need to be able to measure it. In this thesis, different methods for measurement of the intrinsic damping have been considered: one using Fourier analysis has been experimentally evaluated, and another using a specimen in uniaxial tension to measure the phase-lag between stress and strain has been improved. Finally, after discarding these methods, a new method has been developed. The new method measures the damping properties during compression using differential calorimetry. A specimen is subjected to a cyclic uniaxial stress to give a prescribed energy input. The difference in temperature between a specimen under stress and a non-stressed reference sample is measured. The experiments are performed in an insulated vacuum container to reduce convective losses. The rate of temperature change, together with the energy input, is used as a measure of the intrinsic material damping in the specimen. The results show a difference in intrinsic material damping, and the way in which it is influenced by the internal structure is discussed. The second part of the thesis examines hot cracks in solidifying shells. Most metals have a brittle region starting in the two-phase temperature range during solidification and for some alloys this region extends as far as hundreds of degrees below the solidus temperature. To calculate the risk of hot cracking, one needs, besides knowledge of the solidifying material’s ability to withstand stress, knowledge of the casting process to be able to calculate the thermal history of the solidification, and from this calculate the stress. In this work, experimental methods to measure and evaluate the energy transfer from the solidifying melt have been developed. The evaluated data has been used as a boundary condition to numerically calculate the solidification process and the evolving stress in the solidifying shell. A solidification model has been implemented using a fixed-domain methodology in a commercial finite element code, Comsol Multiphysics. A new solidification model using an arbitrary Lagrange Eulerian (ALE) formulation has also been implemented to solve the solidification problem for pure metals. This new model explicitly tracks the movement of the liquid/solid interface and is much more effective than the first model. / QC 20100929
3

Transformation of In-Flight Measured Loads to a Fatigue Test Spectrum / Omvandling av uppmätta flygprovlaster till lastspektra för utmattningsprov

Dümig, Patrick January 2022 (has links)
Fatigue is a well-recognized issue in lightweight and high-performance aircraft structures. As fatigue failures have led to serious accidents and caused significant economic impact in the past, design against fatigue is crucial. Fatigue testing of full-scale aircraft as well as components is an important tool for the advance identification of potential fatigue issues in both new and operational aircraft. Furthermore, coupon testing is used extensively to obtain allowables for materials and structural details to be used in the design process. To obtain accurate results from fatigue testing, not only the test object but also the used load spectrum must accurately represent reality. If the aircraft is operational, an accurate load spectrum can be obtained by measuring the loads in-flight during a sufficiently long period of normal operation of the aircraft. However, the in-flight measured loads data contains an extraordinarily large number of cycles, resulting in long and uneconomical test durations. This thesis aims to propose a method for the selection of an optimal filtering level for fatigue test spectra developed from in-flight measured loads. The thesis also discusses and recommends methods for in-flight measurement of loads, cycle counting as well as damage evaluation using a crack-growth approach. Furthermore, ways to validate the proposed method and its practical application are discussed. An example filtering study is conducted using four different specimens chosen to represent typical structural details of aircraft. The study uses real in-flight measured loads of a light aircraft and also discusses temperature compensation of the loads data. The effect of filtering on fatigue damage is evaluated using crack-growth simulations conducted at a range of filtering and stress levels.  The results show that a remarkable reduction of testing time is possible and as many as 99 % of all cycles in the studied flight load history can be discarded without significantly reducing fatigue damage. The allowable filtering level is shown to differ between the specimens and the different stages of fatigue crack growth. In addition, the applied stress level is found to have a consistent effect on the allowable filtering level.

Page generated in 0.0897 seconds