Spelling suggestions: "subject:"ighlight simulator"" "subject:"highlight simulator""
41 |
Effects of aging on pilot performance measured in response time during emergency situationLee, Jae Woong 01 April 2000 (has links)
No description available.
|
42 |
Stress effects on transfer from virtual environment flight training to stressful flight environments /McClernon, Christopher K. January 2009 (has links) (PDF)
Thesis (Ph.D. in Modeling, Virtual Environments, and Simulation)--Naval Postgraduate School, June 2009. / "June 2009." Thesis advisor: Michael E. McCauley. Performed by the The Modeling, Virtual Environment, and Simulation Institute at the Naval Postgraduate School, Monterey, CA. "Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Modeling, Virtual Environments, and Simulation from the Naval Postgraduate School, June 2009."--P. iii. Includes bibliographical references. Also available online from the Naval Postgraduate School (NPS), Dudley Knox Library Web site and the DTIC Online Web site.
|
43 |
Immunity-based detection, identification, and evaluation of aircraft sub-system failuresMoncayo, Hever Y. January 2009 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xiv, 118 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 109-118).
|
44 |
Software architectures for flight simulationIppolito, Corey A. 05 1900 (has links)
No description available.
|
45 |
Leveraging DMO's hi-tech simulation against the F-16 flying training gap /McGrath, Shaun R. January 2005 (has links) (PDF)
Thesis--Air Command and Staff College, Air University, Maxwell Air Force Base, April 2005. / "April 2007." Thesis advisor: Lt. Col. James A. Rothenflue. Performed by Air University Press (AUL/LP), Maxwell Air Force Base, Montgomery, Ala. "AU/ACSC/2927/2004-05." Includes bibliographical references (p. 35-37). Also available online from the Air University Research Information Management System (AURIMS) and the DTIC Online Web sites.
|
46 |
Integration of ASW helicopter operations and environment into NPSNET /Lentz, Frederick Charles. January 1995 (has links) (PDF)
Thesis (M.S. in Computer Science) Naval Postgraduate School, September 1995. / "September 1995." Thesis advisor(s): Michael J. Zyda, John S. Falby. Includes bibliographical references (p. 107). Also available online.
|
47 |
Implementation and analysis of the Chromakey Augmented Virtual Environment (ChrAVE) version 3.0 and Virtual Environment Helicopter (VEHELO) version 2.0 in simulated helicopter training /Hahn, Mark E. January 2005 (has links) (PDF)
Thesis (M.S. in Information Technology Management)--Naval Postgraduate School, June 2005. / Thesis Advisor(s): Joseph A. Sullivan, Rudolph Darken. Includes bibliographical references (p. 113-115). Also available online.
|
48 |
Development of a seamless morphing wingPetersen, Michael January 2010 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2010. / The Cape Peninsula University of Technology (CPUT) Advanced Manufacturing and
Technology Laboratory (AMTL) developed an Unmanned Aerial Vehicle (UAV)
Technology Demonstrator for the purpose of testing and maturing adaptronic
devices. Extending the flight envelope of this unmanned aerial vehicle by increasing
its range and endurance is the next step in its development. A seamless variable
angle of incidence (sVAI) morphing wing is proposed to increase the lift with little
coupling to drag during takeoff; and decrease the drag with little effect on lift during
climb, thus increasing the total flight performance of the aircraft. CAD models of the
conceptualized sVAI wing and a conventional (CON) wing, as used on the
Technology Demonstrator, were modeled. Numerical analyses on these CAD models
showed that the sVAI wing concept at a 4° twist decreased the ground roll distance
and stall velocity by ±17% and ±31% respectively, as compared to the CON wing in
standard takeoff configuration. This allowed for ± 11.7% less power required for
takeoff allowing the aircraft to get to its operational altitude quicker, thus saving fuel
and reducing energy losses; and increasing range and endurance. The results also
showed that the sVAI wing concept could reduce the drag during climb by ± 14%,
but the lift is also proportionately reduced thus having little improvement on the
climb phase of flight performance. A prototype of the morphing wing was then
conceptualized and designed, using a 3D CADmodeler, and then manufactured. The
product development chain produced for this morphing wing included two rapid
prototyping machines and reverse engineering technologies. The chain allowed for
the rapid manufacturing of light weight and intricate parts. The manufactured wing is
then incorporated into a test rig to compare the actual morphing ability of the
prototype to the theoretical morphing ability of the CADmodel, and thus make flight
performance predictions of the actual vehicle. 3D scans were taken of the prototype
and then converted to 3D CADfiles. The geometrical and topographical deformation
of the prototype was then compared to that of the CAD model showing an average difference of ±1.2% and ±3% at maximum positive and negative configurations,
respectively. This allowed one to make the prediction that the sVAI wing will increase
the performance of the Technology Demonstrator.
|
49 |
Aircraft simulation validation using an instrumental variable approachWeekley, Christopher D. 12 March 2009 (has links)
A procedure is developed which offers the potential to validate aircraft simulation models using noisy flight test measurements. The proposed validation procedure is based on the instrumental variable parameter identification method. The instrumental variable method requires a choice of "instruments." For this research, the "instruments" are chosen using the response predicted by an available simulation model. With the “instruments” chosen from the predicted response, it is shown that the parameter estimates are correlated with only the measured input noise vector. In contrast, the generally used least-squares approach is shown to be correlated with both the state and input noise vectors.
Several studies are presented to demonstrate the utility of the validation procedure. These studies include input variations and noise variations. The method is demonstrated using longitudinal and lateral/directional axis cases derived from a nonlinear simulation of a high performance fighter aircraft. The results are presented using time response comparisons, eigenvalue comparisons, and identified stability derivative comparisons. The case study results confirm that the instrumental variable method performs better than the least-squares technique when the state noise level is high and the input noise level is relatively low. / Master of Science
|
50 |
Examining low-cost simulation and situational awareness assessment in army aviation applicationsDonovan, Sharlene Joy 01 July 2000 (has links)
No description available.
|
Page generated in 0.0673 seconds