• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arachidonic acid-containing phosphatidylcholine species are increased in selected brain regions of a depressive animal model: implications for pathophysiology.

Green, P., Anyakoha, Ngozi G., Gispan-Herman, I,, Yadid, G., Nicolaou, Anna January 2009 (has links)
no / The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression. Following recent findings that the brain fatty acid composition of FSL is characterised by increased arachidonic acid (AA), we used electrospray tandem mass spectrometry and 1H-NMR to examine lipid species in different brain areas. Cholesterol and sphingolipids were increased in the hypothalamus of the FSL rats. Furthermore, arachidonic acid-containing phosphatidylcholine species (AA-PC) were elevated with PC16:0/20:4, PC18:1/20:4 and PC18:0/20:4 (p<0.003) increased in the hypothalamus and striatum. In contrast, there was a decrease in some docosahexaenoic acid (DHA)-containing species, specifically PC18:1/22:6 (p<0.003) in the striatum and PE18:1/22:6 (p<0.004) in the prefrontal cortex. Since no significant differences were observed in the erythrocyte fatty acid concentrations, dietary or environmental causes for these observations are unlikely. The increase in AA-PC species which in this animal model may be associated with altered neuropathy target esterase activity, an enzyme involved in membrane PC homeostasis, may contribute to the depressive phenotype of the FSL rats.
2

Cortical brain release of glutamate by ketamine and fluoxetine : an in vivo microdialysis study in the Flinders sensitive line rat / Gert Petrus Visser.

Visser, Gert Petrus January 2012 (has links)
In vivo intracranial microdialysis is a valuable technique yielding novel and useful insight into normal or pathological neurochemical processes in the brain by means of sampling of interstitial fluid of cells in a living animal. It's most important advantage is that it can continuously monitor time-related changes in the concentration of neurotransmitters and their metabolites, other neuromodulators, energy substrates, as well as exogenous drugs in the extracellular fluid of specific brain areas of interest. While the development and standardization of the intracranial microdialysis technique in our laboratory was the main aim of the current study, a pilot application study was also performed during which the effect of several locally administered pharmacological agents on brain glutamate levels in a genetic rat model of depression was investigated. Abnormal neuronal glutamate levels have been implicated in various psychiatric conditions including major depressive disorder. The Flinders Sensitive Line (FSL) is a genetic line of Sprague-Dawley rat that displays various behavioral and neurochemical traits akin to that observed in depression. The Flinders Resistant Line (FRL) rat is used as the normal control. The prefrontal cortex is an important brain area involved in the neuropathology of depression. Prefrontal cortical glutamate levels in a small number of FSL and FRL rats were therefore compared at baseline and following local administration of potassium chloride (100 mM), the latter in order to study changes in evoked glutamate release. Ketamine hydrochloride (9 mM) and fluoxetine (30 μM) respectively were also administered via reverse dialysis. Prior to initiating the microdialysis studies, an HPLC-fluorescence method was developed to analyze the levels of glutamate in the microdialysate. As part of the development and standardization of the microdialysis technique, a number of validation studies were performed. This included refining the stereotaxic surgery procedure, determining the most appropriate anesthesia protocol, and standardizing the microdialysis procedure with regard to perfusion fluid, flow rate, sample volume, duration of dialysis, and anatomical verification of probe location. The HPLC-fluorescence method for the analysis of glutamate was also developed and validated. This technique proved to be sensitive and specific for the determination of glutamate with a linearity of 0.991 in the concentration range of standards tested (0.1 – 10 μM) and an intra-assay repeatability (precision value) yielding relative standard deviations of less than 10.5%, Mean elution time was between 24 and 26 minutes for glutamate in the microdialysis sample and the limit of detection and quantification was both 0.1 μM. Results from the application study indicated that baseline values of glutamate in the prefrontal cortex did not differ between FRL and FSL rats during the 1 hour period of dialysis. However, potassium chloride-evoked glutamate release was greater in FSL vs. FRL rats, although this difference was not statistically significant. Local perfusion by reverse dialysis of ketamine hydrochloride produced statistically significant increases in glutamate concentrations at certain time points in FSL rats. Although glutamate levels were also increased in FRL rats in response to ketamine, it was not statistically different compared to baseline levels. Fluoxetine perfusion did not affect glutamate release in either of the two rat groups. In conclusion, we have successfully developed and established an intracranial in vivo microdialysis procedure in our laboratory, as well as standardized and validated a sensitive method to analyze glutamate in microdialysate samples. These techniques were then applied in a small number of FSL vs. FRL rats in order to confirm their application in a typical research scenario. Although the data were too limited to make any valid conclusions about glutamate concentrations in an animal model of depression or the effect of drugs on the release thereof, these novel techniques and analyses will be valuable in future studies. / Thesis (MSc (Pharmacology))--North-West University, Potchefstroom Campus, 2013.
3

Cortical brain release of glutamate by ketamine and fluoxetine : an in vivo microdialysis study in the Flinders sensitive line rat / Gert Petrus Visser.

Visser, Gert Petrus January 2012 (has links)
In vivo intracranial microdialysis is a valuable technique yielding novel and useful insight into normal or pathological neurochemical processes in the brain by means of sampling of interstitial fluid of cells in a living animal. It's most important advantage is that it can continuously monitor time-related changes in the concentration of neurotransmitters and their metabolites, other neuromodulators, energy substrates, as well as exogenous drugs in the extracellular fluid of specific brain areas of interest. While the development and standardization of the intracranial microdialysis technique in our laboratory was the main aim of the current study, a pilot application study was also performed during which the effect of several locally administered pharmacological agents on brain glutamate levels in a genetic rat model of depression was investigated. Abnormal neuronal glutamate levels have been implicated in various psychiatric conditions including major depressive disorder. The Flinders Sensitive Line (FSL) is a genetic line of Sprague-Dawley rat that displays various behavioral and neurochemical traits akin to that observed in depression. The Flinders Resistant Line (FRL) rat is used as the normal control. The prefrontal cortex is an important brain area involved in the neuropathology of depression. Prefrontal cortical glutamate levels in a small number of FSL and FRL rats were therefore compared at baseline and following local administration of potassium chloride (100 mM), the latter in order to study changes in evoked glutamate release. Ketamine hydrochloride (9 mM) and fluoxetine (30 μM) respectively were also administered via reverse dialysis. Prior to initiating the microdialysis studies, an HPLC-fluorescence method was developed to analyze the levels of glutamate in the microdialysate. As part of the development and standardization of the microdialysis technique, a number of validation studies were performed. This included refining the stereotaxic surgery procedure, determining the most appropriate anesthesia protocol, and standardizing the microdialysis procedure with regard to perfusion fluid, flow rate, sample volume, duration of dialysis, and anatomical verification of probe location. The HPLC-fluorescence method for the analysis of glutamate was also developed and validated. This technique proved to be sensitive and specific for the determination of glutamate with a linearity of 0.991 in the concentration range of standards tested (0.1 – 10 μM) and an intra-assay repeatability (precision value) yielding relative standard deviations of less than 10.5%, Mean elution time was between 24 and 26 minutes for glutamate in the microdialysis sample and the limit of detection and quantification was both 0.1 μM. Results from the application study indicated that baseline values of glutamate in the prefrontal cortex did not differ between FRL and FSL rats during the 1 hour period of dialysis. However, potassium chloride-evoked glutamate release was greater in FSL vs. FRL rats, although this difference was not statistically significant. Local perfusion by reverse dialysis of ketamine hydrochloride produced statistically significant increases in glutamate concentrations at certain time points in FSL rats. Although glutamate levels were also increased in FRL rats in response to ketamine, it was not statistically different compared to baseline levels. Fluoxetine perfusion did not affect glutamate release in either of the two rat groups. In conclusion, we have successfully developed and established an intracranial in vivo microdialysis procedure in our laboratory, as well as standardized and validated a sensitive method to analyze glutamate in microdialysate samples. These techniques were then applied in a small number of FSL vs. FRL rats in order to confirm their application in a typical research scenario. Although the data were too limited to make any valid conclusions about glutamate concentrations in an animal model of depression or the effect of drugs on the release thereof, these novel techniques and analyses will be valuable in future studies. / Thesis (MSc (Pharmacology))--North-West University, Potchefstroom Campus, 2013.
4

The long-term effects of methamphetamine on depressive-like behaviour and neuroplasticity in stress-sensitive rats / Moné Mouton

Mouton, Moné January 2014 (has links)
Methamphetamine (METH) abuse has become a fast growing drug problem that has developed into a global epidemic. In fact, METH is one of the most commonly abused substances with an estimated 35 million abusers worldwide and is said to be the second most popular illicit drug. The Western Province of South Africa has seen a dramatic increase in drug abuse in recent years where METH is the primary or secondary drug of abuse. Interestingly, more than 50% of these individuals are under the age of 20 years. The longer duration of euphoric effects of METH has attracted many users away from cocaine in favour of METH. In addition to the rapid euphoric effect of METH, the direct short-term effects include arousal, reduced fatigue, an increase in blood pressure, reduced appetite as well as sustained attention. Chronic METH abuse may result in debilitating and long-lasting effects that includes mood disorders such as depression. Studies suggest a strong relationship between exposure to adverse environmental factors early in life and the later development of a neuropsychiatric disorder, such as depression. However, these severe consequences do not seem to invoke cessation of the drug. The euphoric and addictive properties of METH causes users to abuse the drug with an increase in frequency and dose, even though it might not have been their original intention. The primary objective of this study was to investigate the effect of early-life administration of METH to stress-sensitive (Flinders Sensitive Line - FSL) and control (Flinders Resistant Line - FRL) rats on depressive-like behaviour and regional brain monoamine levels later in life. The study implemented a sixteen-day period for administration of METH or a vehicle control from postnatal day 19 (PnD19) to postnatal day 34 (PnD34). The latter developmental stage corresponds to pre-adolescence in the rat when neurological development are similar to that seen in human adolescents, and represents the stage when drug abuse is most common in humans. Chronic dosing of METH and saline was performed twice daily at 09:00 and at 15:00. The animals received a sub-cutaneous (SC) escalating dose regimen of METH during the 16 day period (mimicking binging behaviour in humans), with every dose escalating in increments of 0.2 mg/kg from 0.2 mg/kg to 6.0 mg/kg. The study then investigated whether early-life administration of METH would cause depressive-like behaviours directly after the injection period (immediate drug effects before withdrawal on PnD35) or later in life (after the withdrawal period in early adulthood on PnD60). The behavioural effects were assessed in a battery of tests and thereafter the rats were sacrificed and the frontal cortex removed and snap frozen for later analyses of altered neurochemistry. The study demonstrated that chronic METH treatment during pre-adolescence induces significant behavioural changes related to depression in humans directly after the injection period (PnD35) and later in life (PnD60). The animals displayed antidepressant-like behaviour in the forced swim test (FST) before withdrawal, yet a depressogenic effect was observed 25 days post-withdrawal. This effect also seems to be additive to the congenital depressive-like phenotype of FSL rats, suggesting a role for genetic susceptibility. This observation would be in line with the two-hit hypothesis of depression, suggesting that the manifestation of depression will result when a genetic predisposition is followed by an environmental stressor (i.e. METH) later in life. The data suggests a working hypothesis that individuals that already have a predisposition to depression may be more susceptible to developing depression when abusing METH. The fact that the FSL control rats were more immobile than FRL control rats also confirmed the face validity of the FSL genetic rat model of depression. Locomotor activity assessment indicated that METH treatment decreased locomotor activity in FSL and FRL rats compared to their vehicle controls on PnD35 but not on PnD60. It is important to note that the effects observed in locomotor activity could not have contributed to the immobility observed in the FST, confirming that the immobility in the FST indeed reflects psychomotor and not locomotor effects. The study also demonstrated that METH significantly lowers social interaction behaviour in both FRL and FSL rats, both immediately following drug treatment (PnD35) and after withdrawal (PnD60). It is therefore clear that this effect of METH is long-lasting, putatively related to neurodevelopmental effects. In addition, the rats investigated the familiar object for a greater amount of time in the novel object recognition test (nORT) on PnD35 and PnD60 and may be the result of loss of recognition memory for the familiar object. This data confirms that METH results in cognitive memory deficits probably due to sustained adverse neurodevelopmental effects. Neurochemical analyses of the frontal cortex indicated decreased serotonin (5-HT) and norepinephrine (NE) levels on PnD35. METH is widely recognised for its pro-inflammatory effects, while the reduced 5-HT levels observed may have been the result of an increase in circulating pro-inflammatory cytokines. Neurochemical analyses provided thought-provoking data concerning the role of the permissive hypotheses of depression, indicating that dopamine (DA) is most likely not responsible for the behavioural effects observed, at least under the current study conditions, whereas 5-HT is decidedly more involved than expected. The data also suggest that depletion in NE plays a role in the development of depressive-like behaviours following METH exposure. Based on these findings, we propose that disturbances in 5-HT and NE are a crucial mechanism in how METH abuse may precipitate or worsen depressive-like symptoms in individuals who abuse METH. It should be noted that this study does not discard the role of DA in the development of depression after METH exposure, although under the current study conditions it appears that DA does not play a central role. The current study demonstrated that pre-adolescent exposure to METH can reproduce most of the behavioural changes seen in depressed individuals, and that these behavioural data can be used to identify causal neurochemical factors. Environmental stressors such as METH abuse should be regarded as an additional diagnostic criterion and is relevant to an accumulative risk factor hypothesis. Furthermore, although further study is required, the data suggests that early-life exposure to METH may predispose an individual to mood disorders and behavioural abnormalities later in life. / MSc (Pharmacology), North-West University, Potchefstroom Campus, 2015
5

The long-term effects of methamphetamine on depressive-like behaviour and neuroplasticity in stress-sensitive rats / Moné Mouton

Mouton, Moné January 2014 (has links)
Methamphetamine (METH) abuse has become a fast growing drug problem that has developed into a global epidemic. In fact, METH is one of the most commonly abused substances with an estimated 35 million abusers worldwide and is said to be the second most popular illicit drug. The Western Province of South Africa has seen a dramatic increase in drug abuse in recent years where METH is the primary or secondary drug of abuse. Interestingly, more than 50% of these individuals are under the age of 20 years. The longer duration of euphoric effects of METH has attracted many users away from cocaine in favour of METH. In addition to the rapid euphoric effect of METH, the direct short-term effects include arousal, reduced fatigue, an increase in blood pressure, reduced appetite as well as sustained attention. Chronic METH abuse may result in debilitating and long-lasting effects that includes mood disorders such as depression. Studies suggest a strong relationship between exposure to adverse environmental factors early in life and the later development of a neuropsychiatric disorder, such as depression. However, these severe consequences do not seem to invoke cessation of the drug. The euphoric and addictive properties of METH causes users to abuse the drug with an increase in frequency and dose, even though it might not have been their original intention. The primary objective of this study was to investigate the effect of early-life administration of METH to stress-sensitive (Flinders Sensitive Line - FSL) and control (Flinders Resistant Line - FRL) rats on depressive-like behaviour and regional brain monoamine levels later in life. The study implemented a sixteen-day period for administration of METH or a vehicle control from postnatal day 19 (PnD19) to postnatal day 34 (PnD34). The latter developmental stage corresponds to pre-adolescence in the rat when neurological development are similar to that seen in human adolescents, and represents the stage when drug abuse is most common in humans. Chronic dosing of METH and saline was performed twice daily at 09:00 and at 15:00. The animals received a sub-cutaneous (SC) escalating dose regimen of METH during the 16 day period (mimicking binging behaviour in humans), with every dose escalating in increments of 0.2 mg/kg from 0.2 mg/kg to 6.0 mg/kg. The study then investigated whether early-life administration of METH would cause depressive-like behaviours directly after the injection period (immediate drug effects before withdrawal on PnD35) or later in life (after the withdrawal period in early adulthood on PnD60). The behavioural effects were assessed in a battery of tests and thereafter the rats were sacrificed and the frontal cortex removed and snap frozen for later analyses of altered neurochemistry. The study demonstrated that chronic METH treatment during pre-adolescence induces significant behavioural changes related to depression in humans directly after the injection period (PnD35) and later in life (PnD60). The animals displayed antidepressant-like behaviour in the forced swim test (FST) before withdrawal, yet a depressogenic effect was observed 25 days post-withdrawal. This effect also seems to be additive to the congenital depressive-like phenotype of FSL rats, suggesting a role for genetic susceptibility. This observation would be in line with the two-hit hypothesis of depression, suggesting that the manifestation of depression will result when a genetic predisposition is followed by an environmental stressor (i.e. METH) later in life. The data suggests a working hypothesis that individuals that already have a predisposition to depression may be more susceptible to developing depression when abusing METH. The fact that the FSL control rats were more immobile than FRL control rats also confirmed the face validity of the FSL genetic rat model of depression. Locomotor activity assessment indicated that METH treatment decreased locomotor activity in FSL and FRL rats compared to their vehicle controls on PnD35 but not on PnD60. It is important to note that the effects observed in locomotor activity could not have contributed to the immobility observed in the FST, confirming that the immobility in the FST indeed reflects psychomotor and not locomotor effects. The study also demonstrated that METH significantly lowers social interaction behaviour in both FRL and FSL rats, both immediately following drug treatment (PnD35) and after withdrawal (PnD60). It is therefore clear that this effect of METH is long-lasting, putatively related to neurodevelopmental effects. In addition, the rats investigated the familiar object for a greater amount of time in the novel object recognition test (nORT) on PnD35 and PnD60 and may be the result of loss of recognition memory for the familiar object. This data confirms that METH results in cognitive memory deficits probably due to sustained adverse neurodevelopmental effects. Neurochemical analyses of the frontal cortex indicated decreased serotonin (5-HT) and norepinephrine (NE) levels on PnD35. METH is widely recognised for its pro-inflammatory effects, while the reduced 5-HT levels observed may have been the result of an increase in circulating pro-inflammatory cytokines. Neurochemical analyses provided thought-provoking data concerning the role of the permissive hypotheses of depression, indicating that dopamine (DA) is most likely not responsible for the behavioural effects observed, at least under the current study conditions, whereas 5-HT is decidedly more involved than expected. The data also suggest that depletion in NE plays a role in the development of depressive-like behaviours following METH exposure. Based on these findings, we propose that disturbances in 5-HT and NE are a crucial mechanism in how METH abuse may precipitate or worsen depressive-like symptoms in individuals who abuse METH. It should be noted that this study does not discard the role of DA in the development of depression after METH exposure, although under the current study conditions it appears that DA does not play a central role. The current study demonstrated that pre-adolescent exposure to METH can reproduce most of the behavioural changes seen in depressed individuals, and that these behavioural data can be used to identify causal neurochemical factors. Environmental stressors such as METH abuse should be regarded as an additional diagnostic criterion and is relevant to an accumulative risk factor hypothesis. Furthermore, although further study is required, the data suggests that early-life exposure to METH may predispose an individual to mood disorders and behavioural abnormalities later in life. / MSc (Pharmacology), North-West University, Potchefstroom Campus, 2015

Page generated in 0.1256 seconds