• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The dynamics of deployment and observation of a rigid body spacecraft system in the linear and non-linear two-body problem

Ottesen, David Ryan 04 March 2013 (has links)
Modern space situational awareness entails the detection, tracking, identification, and characterization of resident space objects. Characterization is typically accomplished through the use of ground and space based sensors that are able to identify some specific physical feature, monitor unique dynamical behaviors, or deduce some information about the material properties of the object. The present investigation considers the characterizaiton aspects of situational awareness from the perspective of a close-proximity formation reconnaissance mission. The present study explores both relative translational and relative rotational motion for deployment of a spacecraft and observation of a resident space object. This investigation is motivated by specific situations in which characterization with ground or fixed space based sensors is insufficient. Instead, one or more vehicles are deployed in the vicinity of the object of interest. These could be, for instance, nano-satellites with imaging sensors. Nano-satellites offer a low-cost and effective technological platform, which makes consideration of the proposed scenario more feasible. Although the motivating application is rooted in space situational awareness, the techniques explored are generally applicable to flight in the vicinity of asteroids, and both cooperative vs. non-cooperative resident space objects. The investigation is initially focused on identifying the key features of the relative dynamics that are relevant to space situational awareness applications. Subsequently, effective spacecraft control techniques are considered to achieve the reconnaissance goals. / text

Page generated in 0.077 seconds