• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 31
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 164
  • 164
  • 164
  • 33
  • 29
  • 22
  • 21
  • 19
  • 17
  • 17
  • 14
  • 14
  • 14
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Flow behaviour and interactions of blood corpuscles in an annular vortex distal to a tubular expansion

Karino, Takeshi January 1977 (has links)
No description available.
32

Very Viscous Flows Driven by Gravity with particular application to Slumping of Molten Glass

Stokes, Yvonne Marie January 1998 (has links)
This thesis examines the flow of very viscous Newtonian fluids driven by gravity. It is written with concern for specific applications in the optics industry, with emphasis on the slumping of molten glass into a mould, as in the manufacture of optical components, which are in turn used to manufacture ophthalmic lenses. This process is known as thermal replication. However, the work has more general applicability, and disc viscometry, used to determine the viscosity of very viscous fluids, is also considered. In addition, one chapter of the thesis is devoted to the flow of dripping honey, as another example of a very viscous flow to which the model can be applied. The Stokes creeping-flow equations are used to model the very viscous flows of interest. The main solution method is finite elements, and a purpose-written computer program has been developed to solve the creeping-flow equations by this method. The present program is restricted to solving for either two-dimensional or axisymmetric flows but is extendible to three dimensions. In addition, semi-analytic series and asymptotic methods are used for some small portions of the work. The optical applications of this work demand consideration of the topic of computing surface curvature, and therefore second derivatives, from inexact and discrete numerical and experimental data. For this purpose, fitting of B-splines by a least-squares method to coordinate data defining the surface has been used. Much of the work assumes isothermal conditions, but in the context of the accuracy required in optical component manufacture it is also possible that non-isothermal effects will be important. Consequently, this restriction is eventually relaxed and some consideration given to non-isothermal conditions. In order to validate the creeping-flow model and finite-element program, comparisons of numerical simulations with experimental results are performed. A preliminary assessment of the importance of non-isothermal conditions to the thermal-replication process is also made by comparing isothermal and non-isothermal simulations with experimental results. The isothermal model is found to best match the experimental data. / Thesis (Ph.D.)--School of Applied Mathematics, 1998.
33

A spreading blob vortex method for viscous bounded flows.

Rossi, Louis Frank., Rossi, Louis Frank. January 1993 (has links)
In this dissertation, I introduce a vortex method that is generally applicable to any two-dimensional, incompressible flow with or without boundaries. This method is deterministic, accurate, convergent, naturally adaptive, geometry independent and fully localized. For viscous flows, the vorticity distribution of each vortex element must evolve in addition to following a Lagrangian trajectory. My method relies upon an idea called core spreading. Core spreading is inconsistent by itself, but I have corrected it with a deterministic process known as "vortex fission" where one "fat" vortex is replaced by several "thinner" ones. Also, I examine rigorously a method for merging many blobs into one. This process maintains smaller problem sizes thus boosting the efficiency of the vortex method. To prove that this corrected core spreading method will converge uniformly, I adapted a continuous formalism to this grid-free scheme. This convergence theory does not rely on any form of grid. I only examine the linear problem where the flow field is specified, and treat the full nonlinear problem as a perturbation of the linear problem. The estimated rate of convergence is demonstrated to be sharp in several examples. Boundary conditions are approximated indirectly. The boundary is decomposed into a collection of small linear segments. I solve the no-slip and no-normal flow conditions simultaneously by superimposing a potential flow and injecting vorticity from the boundary consistent with the unsteady Rayleigh problem. Finally, the ultimate test for this new method is to simulate the wall jet. The simulations produce a dipole instability along the wall as observed in water tank and wind tunnel experiments and predicted by linear stability analysis. Moreover, the wavelength and height of these simulations agree quantitatively with experimental observations.
34

Spatial-temporal dependency of traffic flow and its implications for short-term traffic forecasting

Yue, Yang, 樂陽 January 2006 (has links)
published_or_final_version / abstract / Urban Planning and Environmental Management / Doctoral / Doctor of Philosophy
35

Neighborhood ventilation of a building cluster by combined forces

Tsui, Ka-cheung., 徐家祥. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
36

NUMERICAL SIMULATION OF NONLINEAR WAVES IN FREE SHEAR LAYERS (MIXING, COMPUTATIONAL, FLUID DYNAMICS, HYDRODYNAMIC STABILITY, SPATIAL, FLUID FLOW MODEL).

PRUETT, CHARLES DAVID. January 1986 (has links)
A numerical model has been developed which simulates the three-dimensional stability and transition of a periodically forced free shear layer in an incompressible fluid. Unlike previous simulations of temporally evolving shear layers, the current simulations examine spatial stability. The spatial model accommodates features of free shear flow, observed in experiments, which in the temporal model are precluded by the assumption of streamwise periodicity; e.g., divergence of the mean flow and wave dispersion. The Navier-Stokes equations in vorticity-velocity form are integrated using a combination of numerical methods tailored to the physical problem. A spectral method is adopted in the spanwise dimension in which the flow variables, assumed to be periodic, are approximated by finite Fourier series. In complex Fourier space, the governing equations are spatially two-dimensional. Standard central finite differences are exploited in the remaining two spatial dimensions. For computational efficiency, time evolution is accomplished by a combination of implicit and explicit methods. Linear diffusion terms are advanced by an Alternating Direction Implicit/Crank-Nicolson scheme whereas the Adams-Bashforth method is applied to convection terms. Nonlinear terms are evaluated at each new time level by the pseudospectral (collocation) method. Solutions to the velocity equations, which are elliptic, are obtained iteratively by approximate factorization. The spatial model requires that inflow-outflow boundary conditions be prescribed. Inflow conditions are derived from a similarity solution for the mean inflow profile onto which periodic forcing is superimposed. Forcing functions are derived from inviscid linear stability theory. A numerical test case is selected which closely parallels a well-known physical experiment. Many of the aspects of forced shear layer behavior observed in the physical experiment are captured by the spatial simulation. These include initial linear growth of the fundamental, vorticity roll-up, fundamental saturation, eventual domination of the subharmonic, vortex pairing, emergence of streamwise vorticity, and temporary stabilization of the secondary instability. Moreover, the spatial simulation predicts the experimentally observed superlinear growth of harmonics at rates 1.5 times that of the fundamental. Superlinear growth rates suggest nonlinear resonances between fundamental and harmonic modes which are not captured by temporal simulations.
37

Conditional stochastic analysis of solute transport in heterogeneous geologic media.

Zhang, Dongxiao. January 1993 (has links)
This dissertation develops an analytical-numerical approach to deterministically predict the space-time evolution of concentrations in heterogeneous geologic media conditioned on measurements of hydraulic conductivities (transmissivities) and/or hydraulic heads. Based on the new conditional Eulerian-Lagrangian transport theory by Neuman, we solve the conditional transport problem analytically at early time, and express it in pseudo-Fickian form at late time. The stochastically derived deterministic pseudo-Fickian mean concentration equation involves a conditional, space-time dependent dispersion tensor. The latter not only depends on properties of the medium and the velocity but also on the available information, and can be evaluated numerically along mean "particle" trajectories. The transport equation lends itself to accurate solution by standard Galerkin finite elements on a relatively coarse grid. This approach allows computing without using Monte Carlo simulation and explicitly the following: Concentration variance/covariance (uncertainty), origin of detected contaminant and associated uncertainty, mass flow rate across a "compliance surface", cumulative mass release and travel time probability distribution across this surface, uncertainty associated with the latter, second spatial moment of conditional mean plume about its center of mass, conditional mean second spatial moment of actual plume about its center of mass, conditional co-variance of plume center of mass, and effect of non-Gaussian velocity distribution. This approach can also account for uncertainty in initial mass and/or concentration when predicting the future evolution of a plume, whereas almost all existing stochastic models of solute transport assume the initial state to be known with certainty. We illustrate this approach by considering deterministic and uncertain instantaneous point and nonpoint sources in a two-dimensional domain with a mildly fluctuating, statistically homogeneous, lognormal transmissivity field. We take the unconditional mean velocity to be uniform, but allow conditioning on log transmissivity and hydraulic head data. Conditioning renders the velocity field statistically nonhomogeneous with reduced variances and correlation scales, renders the predicted plume irregular and non-Gaussian, and generally reduces both predictive dispersion and uncertainty.
38

Calibration and validation of aquifer model.

Sagar, Budhi,1943- January 1973 (has links)
The main aim of this study is to develop a suitable method for the calibration and validation of mathematical models of large and complex aquifer systems. Since the calibration procedure depends on the nature of the model to be calibrated and since many kinds of models are used for groundwater, the question of model choice is broached first. Various aquifer models are critically reviewed and a table to compare them as to their capabilities and limitations is set up. The need for a general calibration method for models in which the flow is represented by partial differential equations is identified from this table. The calibration problem is formulated in the general mathematical framework as the inverse problem. Five types of inverse problems that exist in modeling aquifers by partial differential equations are identified. These are, to determine (1) parameters, (2) initial conditions, (3) boundary conditions, (4) inputs, and (5) a mixture of the above. Various methods to solve these inverse problems are reviewed, including those from fields other than hydrology. A new direct method to solve the inverse problem (DIMSIP) is then developed. Basically, this method consists of transforming the partial differential equations of flow to algebraic equations by substituting in them the values of the various derivatives of the dependent variable (which may be hydraulic pressure, chemical concentration or temperature). The parameters are then obtained by formulating the problem in a nonlinear optimization framework. The method of sequential unconstrained minimization is used. Spline functions are used to evaluate the derivatives of the dependent variable. Splines are functions defined by piecewise polynomial arcs in such a way that derivatives up to and including the order one less than the degree of polynomials used are continuous everywhere. The natural cubic splines used in this study have the additional property of minimum curvature which is analogous to minimum energy surface. These and the derivative preserving properties of splines make them an excellent tool for approximating the dependent variable surfaces in groundwater flow problems. Applications of the method to both a test situation as well as to real-world data are given. It is shown that the method evaluates the parameters, boundary conditions and inputs; that is, solves inverse problem type V. General conditions of heterogeneity and anisotropy can be evaluated. However, the method is not applicable to steady flows and has the limitation that flow models in which the parameters are functions of the dependent variable cannot be calibrated. In addition, at least one of the parameters has to be preassigned a value. A discussion of uncertainties in calibration procedures is given. The related problems of model validation and sampling of aquifers are also discussed.
39

Two-dimensional finite element programs for water flow and water quality in multi-aquifer systems

El Didy, Sherif Mohamed Ahmed,1951- January 1986 (has links)
Multiple aquifer systems similar to those that exist at coal gasification sites are complicated groundwater situations. In these types of systems, the aquifers are separated by aquitards through which interaction between aquifers can occur. The movement of the products of combustion into the coal seam and adjacent aquifers is a serious problem of interest. This dissertation presents two-dimensional finite element models for water flow and water quality in multiple aquifer systems. These models can be applied for general problems as well as the problems associated with the burned cavities in coal gasification sites. The Galerkin weightedresidual method is used in both models. Eight-noded isoparametric elements are used. Spatial numerical integration is performed using Gaussian quadrature. A weighted finite difference scheme is used, in both of them, for time integration. The two models are written in FORTRAN V for the CDC CYBER 175. They are applicable to one- or two-dimensional problems involving steady-state or transient flow. Each aquifer can have different initial conditions and boundary conditions. Boundary conditions, pumping rates, and the recharge can be specified as a function of time. The output of the flow program-nodal heads and velocity components is used as an input to the quality program. The numerical models were validated for simple problems that have available analytical solutions.
40

The use of well response to natural forces in the estimation of hydraulic parameters

Ritzi, Robert William. January 1989 (has links)
The water level in an open well tapping a confined formation is influenced by natural forces including the solid Earth tide (SET) and atmospheric pressure variation (APV). The spectral method is used to derive an analytical solution for well response to both the random and the periodic components of the combined SET and APV (CSA) forcings. Previously posed models for the individual SET and APV forcings are subsets of this more general model. An inverse theory and an algorithm are developed in order to provide improved results when using such models to estimate the hydraulic parameters associated with a given formation. A complex vector estimation criterion is used in developing a nonlinear, Gauss-Marquardt estimation algorithm. When compared to previous methods of fitting modulus and phase, the complex vector estimation methodology has less bias and variance, and is more robust. An examination of the response surface of the estimation criterion reveals that storativity (S) is relatively non-unique, and thus is not considered in the context of the parameter estimation problem. However, since there is little correlation between transmissivity (T) and S estimators, a good estimate for T is still possible independent of having knowledge of S. An estimate of T is possible only if the data contain sufficient information so that the analysis occurs within an identifiability window, which is defined with respect to the dimensionless transmissivity of the system. The CSA estimation methodology is compared to individual SET and APV schemes. The CSA scheme gives the greatest probability that sufficient information is contained in a data record so that T is identifiable. The results of applications to synthetic data indicate that the OEA scheme gives a T estimate with the most precision, and also that it requires collecting fewer observations.

Page generated in 0.3871 seconds