Spelling suggestions: "subject:"low fhysics"" "subject:"low ephysics""
1 |
Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbineAkhgari, Arash 18 October 2011 (has links)
The performance of a vertical axis wind turbine with and without a diffuser was studied
using direct force measurement technique applied to a scaled model of the rotor in a
water tunnel. The experiment was conducted at different tip-speed ratios. The maximum
power coefficient for the turbine was found to be equal to 0.35 for the rotor with diffuser
and to 0.26 for the rotor without diffuser. Therefore, the maximum power coefficient was
increased by 35% when the diffuser was used in the configuration.
In the second part of this work, the flow patterns downstream of the turbine were
studied by the particle image velocimetry (PIV) technique. Six different tip-speed ratios
were considered for each configuration (with and without a diffuser). The vorticity and
the streamline plots provide insight into the flow physics in each configuration. In
addition, the swept area of a full-scale rotor was calculated for both a diffuser-augmented
and a bare turbine for a range of power outputs. / Graduate
|
2 |
Accurate physical and numerical modeling of complex vortex phenomena over delta wingsCrippa, Simone January 2006 (has links)
<p>With this contribution to the AVT-113/VFE-2 task group it was possible to prove the feasibility of high Reynolds number CFD computations to resolve and thus better understand the peculiar dual vortex system encountered on the VFE-2 blunt leading edge delta wing. Initial investigations into this phenomenon seemed to undermine the hypothesis, that the formation of the inner vortex system relies on the laminar state of the boundary layer at separation onset. As a result of this research, this initial hypothesis had to be expanded to account also for high Reynolds number cases, where a laminar boundary layer status at separation onset could be excluded. Furthermore, the data published in the same context shows evidence of secondary separation under the inner primary vortex. This further supports the supposition of a different generation mechanism of the inner vortical system other than a pure development out of a possibly laminar separation bubble. The unsteady computations performed on numerical grids with different levels of refinement led furthermore to the establishment of internal guidelines specific to the DES approach.</p>
|
3 |
Accurate physical and numerical modeling of complex vortex phenomena over delta wingsCrippa, Simone January 2006 (has links)
With this contribution to the AVT-113/VFE-2 task group it was possible to prove the feasibility of high Reynolds number CFD computations to resolve and thus better understand the peculiar dual vortex system encountered on the VFE-2 blunt leading edge delta wing. Initial investigations into this phenomenon seemed to undermine the hypothesis, that the formation of the inner vortex system relies on the laminar state of the boundary layer at separation onset. As a result of this research, this initial hypothesis had to be expanded to account also for high Reynolds number cases, where a laminar boundary layer status at separation onset could be excluded. Furthermore, the data published in the same context shows evidence of secondary separation under the inner primary vortex. This further supports the supposition of a different generation mechanism of the inner vortical system other than a pure development out of a possibly laminar separation bubble. The unsteady computations performed on numerical grids with different levels of refinement led furthermore to the establishment of internal guidelines specific to the DES approach. / QC 20101111
|
4 |
QUARTER ANNULUS SIMULATIONS OF BLADE ROW INTERACTION AT SEVERAL GAPS AND DISCUSSION OF LOW PHYSICSLIST, MICHAEL GREGORY 08 October 2007 (has links)
No description available.
|
5 |
Realistic simulations of delta wing aerodynamics using novel CFD methodsGörtz, Stefan January 2005 (has links)
<p>The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows.</p><p>Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible.</p><p>In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored.</p><p>Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment.</p><p>Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data.</p><p>The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times.</p>
|
6 |
Realistic simulations of delta wing aerodynamics using novel CFD methodsGörtz, Stefan January 2005 (has links)
The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows. Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible. In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored. Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment. Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data. The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times. / QC 20101019
|
7 |
Flow around porous barriers: fundamental flow physics and applicationsBasnet, Keshav 01 July 2015 (has links)
Investigating flow and turbulence structure around a barrier mounted on the ground or placed in its vicinity is a fundamental problem in wind engineering because of many practical applications related to protection against adverse effects induced by major wind storms (e.g., hurricanes) and snow events (e.g., snow fences used to reduce adverse effects of snow drifting on the roads). In this work the focus is on the case when the obstacle/barrier is porous and the shape of the obstacle is close to a high-aspect-ratio rectangular cylinder situated in the vicinity of the ground. The study employs a range of numerical and experimental techniques to achieve this goal that include 3D LES and 2D RANS numerical simulations, and RTK survey and 3D photogrammetry techniques to measure ground elevations and snow deposits in the field.
In the first part of the study, high-resolution large eddy simulations are used to understand the fundamental flow physics of flow past 2D solid and porous vertical plates with a special focus on describing the unsteady wind loads on the obstacle, vortical structure of the turbulent wake, spectral content of the wake, the separated shear layers and of the characteristics of the large-scale vortex shedding behind the plate, if present. Results show that LES can accurately predict mean flow and turbulence statistics around solid/porous cylinders. Then, a detailed parametric study of flow past vertical solid and porous plates situated in the vicinity of a horizontal bed is performed for the purpose of understanding changes in the mean flow structure, turbulence statistics and dynamics of large scale coherent structures as a function of the main nondimensional geometrical parameters (bottom gap for solid and porous plates, and porosity and average hole size of porous plates) and flow variables (e.g., bed roughness) that affect the wake flow. In particular, the LES flow fields allowed clarifying how the interactions between the bottom and the top separated shear layers change with increasing bottom gap and what is the effect of the bleeding flow on the interactions between the separated shear layers that determine the coherence of the large-scale eddies at large distances from the wake.
In the second part of the thesis, a novel methodology based on field monitoring of the snow deposits and RANS numerical simulations is proposed to improve the design of snow fences and in particular the design of lightweight plastic snow fences that are commonly used to protect roads in the US Midwest against the snow drifting. The goal of the design optimization procedure is to propose a snow fence design that can retain a considerable amount of snow within a shorter downwind distance compared to fences of standard design. A major contribution of the present thesis was the development of a novel non-intrusive image-based technique that can be used to quantitatively estimate the temporal evolution of the volume of snow trapped by a fence over long periods of time. This technique is based on 3-D close range photogrammetry. Results showed that this technique can produce estimations of the snow deposits of comparable accuracy to that given by commonly used methods. This is the first application of this type of techniques to measurements of the snow deposits.
|
8 |
Thermal dispersion and convective heat transfer during laminar pulsating flow in porous mediaPathak, Mihir Gaurang 28 June 2010 (has links)
Solid-fluid thermal interactions during unsteady flow in porous media play an important role in the regenerators of pulse tube cryocoolers. Pore-level thermal processes in porous media under unsteady flow conditions are poorly understood. The objective of this investigation is to study the pore-level thermal phenomena during pulsating flow through a generic, two-dimensional porous medium by numerical analysis. Furthermore, an examination of the effects of flow pulsations on the thermal dispersion and heat transfer coefficient that are encountered in the standard, volume-average energy equations for porous media are carried out. The investigated porous media are periodic arrays of square cylinders. Detailed numerical data for the porosity range of 0.64 to 0.84, with flow Reynold's numbers from 0-1000 are obtained. Based on these numerical data, the instantaneous as well as cycle-average thermal dispersion and heat transfer coefficients, to be used in the standard unsteady volume-average energy conservation equations for flow in porous media, are derived. Also, the adequacy of current applied cycle-average correlations for heat transfer coefficients and the inclusion of the thermal dispersion in the definition of an effective fluid thermal conductivity are investigated.
|
9 |
Low Reynolds Number Airfoil AerodynamicsSrinivasa Murthy, P 02 1900 (has links)
In this thesis we describe the development of Reynolds- averaged Navier Stokes code for the flow past two- dimensional configuration. Particularly, emphasis has been laid on the study of low Reynolds number airfoil aerodynamics.
The thesis consists of five chapters covering the back ground history, problem formulation, method of solution and discussion of the results and conclusion.
Chapter I deals with a detailed background history of low Reynolds number aerodynamics, problem associated with it, state of the art, its importance in practical applications in aircraft industries.
Chapter II describes the mathematical model of the flow physics and various levels of approximations. Also it gives an account of complexity of the equations at low Reynolds number regarding flow separation, transition and reattachment.
Chapter III describes method of solution, numerical algorithm developed, description of various upwind schemes, grid system, finite volume discrieti-zation of the governing equations described in Chapter II.
Chapter IV describes the application of the newly developed Navier Stokes code for the test cases from GAMM Workshop proceedings. Also it describes validation of the code for Euler solutions, Blasius solution for the flow past flat plate and compressible Navier Stokes solution for the flow past NACA 0012 Airfoil at low Reynolds number.
Chapter V describes the application of the Navier Stokes code for the more test cases of current practical interest . In this chapter laminar separation bubble characteristics are investigated in detail regarding formation, growth and shedding in an unsteady environment.
Finally the conclusion is drawn regarding the robustness of the newly developed code in predicting the airfoil aerodynamic characteristics at low Reynolds number both in steady and unsteady environment.
Lastly, suggestion for future work has been highlighted.
|
10 |
Investigation of Heat Transfer Rates Around the Aerodynamic Cavities on a Flat Plate at Hypersonic Mach NumbersPhilip, Sarah Jobin January 2011 (has links) (PDF)
Aerodynamic cavities are common features on hypersonic vehicles which are caused in both large and small scale features like surface defects, pitting, gap in joints etc. In the hypersonic regime, the presence of such cavities alters the flow phenomenon considerably and heating rates adjacent to the discontinuities can be greatly enhanced due to the diversion of flow. Since the 1960s, a great deal of theoretical and experimental research has been carried out on cavity flow physics and heating. However, most of the studies have been done to characterize the effect downstream and within the cavity. In the present study, a series of were carried out in the shock tunnel to investigate the heating characteristics, upstream and on the lateral side of the cavity. Heat flux measurement has been done using indigenously developed high resistance platinum thin film gauges. High resistance gauges, as contrary to the conventionally used low resistance gauges were showing good response to the extremely low heat flux values on a flat plate with sharp leading edge. The experimental measurements of heat done on a flat plate with sharp leading edge using these gauges show good match with theoretical relation by Crabtree et al. Flow visualization using high speed camera with the cavity model and shock structures visualized were similar to reported in supersonic cavity flow. This also goes to state that in spite of the fluctuating shear layer-the main feature of hypersonic flow over a cavity ,reasonable studies can be done within the short test time of shock tunnel.
Numerical Simulations by solving the Navier-Stokes equation, using the commercially available CFD package FLUENT 13.0.0 has been done to complement the experimental studies.
|
Page generated in 0.0693 seconds