Spelling suggestions: "subject:"low kolver"" "subject:"low golver""
11 |
Development Of A General Purpose Flow Solver For Euler EquationsShende, Nikhil Vijay 07 1900 (has links) (PDF)
No description available.
|
12 |
A Numerical Study of Droplet Dynamics in Viscoelastic FlowsArun, Dalal Swapnil January 2016 (has links) (PDF)
The polymers are integral part of vast number of products used in day to day life due to their anomalous viscoelastic behaviour. The remarkable flow behaviour exhibited by the polymeric fluids including rod climbing, extrudate swell, tube-less siphon, viscoelastic jet, elastic recoil and sharkskin instability is attributed to the complex microstructures in the polymeric liquids that arise due to the interactions of long chain polymer molecules with each other and with the surrounding fluid particles. The significance of polymer in transportation, packaging, pharmaceutical, chemical, biomedical, textiles, food and polymer processing industries highlights the requirement to comprehend the complex rheology of polymeric fluids.
First, we investigate the flow features exhibited by different shear thinning vis-coelastic fluids in rectangular cavities over a wide range of depth to width ratio. We have developed a viscoelastic flow solver in order to perform numerical simulations of highly elastic flow of viscoelastic fluids. In particular, we discuss the simulations of flows of constant viscosity Boger and shear thinning viscoelastic fluids in the complex flow problems using different constitutive equations. The effects of elasticity and inertia on the flow behaviour of two shear thinning vis-coelastic fluids modeled using Giesekus and linear PTT constitutive equations in rectangular cavities is studied. The size of the primary eddies and critical aspect ratio over which the corner eddies merge to yield a second primary eddy in deep cavities is discussed. We demonstrate that the flow in the shallow and deep cavities can be characterized using Weissenberg number, defined based on the shear rate, and Deborah number, specified based on the convective time scale, respectively. The study of flow in driven cavities is important in understanding of the mixing process during synthesis of blends and composites.
Next, we study two phase polymeric flow in confined geometries. Nowadays, polymer processing industries prefer to develop newer polymer with the desired material properties mechanically by mixing and blending of different polymer components instead of chemically synthesizing fresh polymer. The microstructure of blends and emulsions following drop deformation, breakup and coalescence during mixing determines its macroscopic interfacial rheology. We developed a two phase viscoelastic flow solver using volume conserving sharp interface volume-of-fluid (VOF) method for studying the dynamics of single droplet subjected to the complex flow fields.
We investigated the effects of drop and matrix viscoelasticity on the motion and deformation of a droplet suspended in a fully developed channel flow. The flow behaviour exhibited by Newtonian-Newtonian, viscoelastic-Newtonian, Newtonian-viscoelastic and viscoelastic-viscoelastic drop-matrix systems is presented. The difference in the drop dynamics due to presence of constant viscosity Boger fluid and shear thinning viscoelastic fluid is represented using FENE-CR and linear PTT constitutive equations, respectively. The presence of shear thinning viscoelastic fluid either in the drop or the matrix phase suppresses the drop deformation due to stronger influence of matrix viscoelasticity as compared to the drop elasticity. The shear thinning viscoelastic drop-matrix system further restricts the drop deformation and it displays non-monotonic de-formation. The constant viscosity Boger fluid droplet curbs the drop deformation and exhibits flow dynamics identical to the shear thinning viscoelastic droplet, thus indicating that the nature of the drop viscoelasticity has little influence on the flow behaviour. The matrix viscoelasticity due to Boger fluid increases drop deformation and displays non-monotonic deformation. The drop deformation is further enhanced in the case of Boger fluid in viscoelastic drop-matrix system. Interestingly, the pressure drop due to the presence of viscoelastic drop in a Newtonian matrix is lower than the single phase flow of Newtonian fluid. We also discuss the effects of inertia, surface tension, drop to matrix viscosity ratio and the drop size on these drop-matrix systems.
Finally, we investigate the emulsion rheology by studying the motion of a droplet in the square lid driven cavity flow. The viscoelastic effects due to constant viscosity Boger fluid and shear thinning viscoelastic fluid are illustrated using FENECR and Giesekus rheological relations, respectively. The presence of viscoelasticity either in drop or matrix phase boosts the drop deformation with the drop viscoelasticity displaying intense deformation. The drop dynamics due to the droplet viscoelasticity is observed to be independent of the nature of vis-coelastic fluid. The shear thinning viscoelastic matrix has a stronger influence on the drop deformation and orientation compared to the Boger fluid matrix. The different blood components, cells and many materials of industrial importance are viscoelastic in nature. Thus, the present study has significant applications in medical diagnostics, drug delivery, manufacturing and processing industries, study of biological flows, pharmaceutical research and development of lab-on-chip devices.
|
13 |
Experimental Analysis of Shock Stand off Distance over Spherical Bodies in Hypersonic FlowsThakur, Ruchi January 2015 (has links) (PDF)
One of the characteristics of the high speed ows over blunt bodies is the detached shock formed in front of the body. The distance of the shock from the stagnation point measured along the stagnation streamline is termed as the shock stand o distance or the shock detachment distance. It is one of the most basic parameters in such ows. The need to know the shock stand o distance arises due to the high temperatures faced in these cases. The biggest challenge faced in high enthalpy ows is the high amounts of heat transfer to the body. The position of the shock is relevant in knowing the temperatures that the body being subjected to such ows will have to face and thus building an efficient system to reduce the heat transfer. Despite being a basic parameter, there is no theoretical means to determine the shock stand o distance which is accepted universally. Deduction of this quantity depends more or less on experimental or computational means until a successful theoretical model for its predictions is developed.
The experimental data available in open literature for spherical bodies in high speed ows mostly lies beyond the 2 km/s regime. Experiments were conducted to determine the shock stand o distance in the velocity range of 1-2 km/s. Three different hemispherical bodies of radii 25, 40 and 50 mm were taken as test models. Since the shock stand o distance is known to depend on the density ratio across the shock and hence gamma (ratio of specific heats), two different test gases, air and carbon dioxide were used for the experiments here. Five different test cases were studied with air as the test gas; Mach 5.56 with Reynolds number of 5.71 million/m and enthalpy of 1.08 MJ/kg, Mach 5.39 with Reynolds number of 3.04 million/m and enthalpy of 1.42 MJ/kg Mach 8.42 with Reynolds number of 1.72 million/m and enthalpy of 1.21 MJ/kg, Mach 11.8 with Reynolds number of 1.09 million/m and enthalpy of 2.03 MJ/kg and Mach 11.25 with Reynolds number of 0.90 million/m and enthalpy of 2.88 MJ/kg. For the experiments conducted with carbon dioxide as test gas, typical freestream conditions were: Mach 6.66 with Reynolds number of 1.46 million/m and enthalpy of 1.23 MJ/kg. The shock stand o distance was determined from the images that were obtained through schlieren photography, the ow visualization technique employed here. The results obtained were found to follow the same trend as the existing experimental data in the higher velocity range. The experimental data obtained was compared with two different theoretical models given by Lobb and Olivier and was found to match. Simulations were carried out in HiFUN, an in-house CFD package for Euler and laminar own conditions for Mach 8 own over 50 mm body with air as the test gas. The computational data was found to match well with the experimental and theoretical data
|
14 |
Wing in Ground EffectMondal, Partha January 2013 (has links) (PDF)
The thesis presents a two pronged approach for predicting aerodynamics of air- foils/wings in the vicinity of the ground. The first approach is effectively a model for ground effect studies, employing an inexpensive Discrete Vortex Method for the 2D pre- dictions and the well known Numerical lifting line theory for the 3D predictions. The second one pertains to the dynamic ground effect analysis which employs the state of the art moving mesh methodology based time accurate CFD. In that sense, the thesis deals with two ends of spectrum in the ground effect analysis; one, a model to be used in the concept design phase and the other an advanced CFD tool for analysis.
The proposed model for ground effect studies is based on the well known Discrete Vortex Method (DVM). An important aspect of this method is that it employs what is referred to as the Generalized Kutta Joukowski Theorem (GKJ), meant for interaction problems with multiple vortices, for predicting the lift (and drag) within a potential flow framework. After ascertaining the correctness of using the GKJ theorem for lift prediction for airfoils in ground effect, a modified DVM is presented as a model for ground effect predictions. As per this model, knowing the free stream lift and drag (either from an ex- periment or from a RANS computation) the aerodynamics of the section in ground effect can be predicted. The model is effectively built by constraining the DVM to produce the reference lift/drag in the free stream. The accuracy of the model, particularly for the more relevant high lift sections used during take-off and landing, is systematically estab- lished for a number of test cases. Knowing the sectional ground effect, the extension to 3D analysis is very simple and this is achieved through the well known Numerical Lifting Line theory. The efficacy of the proposed method for the 3D applications is demonstrated using a high lift wing in ground effect. It is worth noting that the proposed model predicts the lift and drag very accurately, practically at no computational cost as compared to modern RANS based CFD tools requiring over 40 or 50 million volumes at a high computational cost and intense human intervention for generating the grids for every ground clearance.
The other aspect of the thesis pertains to what is referred to as the Dynamic Ground Effect. Normally the CFD computations mimic the ground effect experiments in simulat- ing the ground effect. These simulations do not maintain geometric similarity with the actual landing or take-off sequence of the aircrafts and this can only be achieved when the simulations are dynamic. Dynamics is also important in case of combat aircrafts (particularly their naval versions) with an aggressive landing and take-off. The dynamic ground effect simulations also provides a framework for simulating varied gust conditions. This dynamic simulation of the ground effect is accomplished using a novel sinking grid methodology, which allows the grids to sink in the ground as the aircraft approaches the ground along the glide path. These simulations make use of the state of the art, time accurate moving grid methods and therefore can be computationally expensive. Never- theless, the utility of such computations in terms of their ability to produce continuous data has been highlighted in the thesis. In that sense, these dynamic computations will be cheaper as compared to the static simulations to produce data at the same level of resolution.
|
Page generated in 0.0315 seconds