• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 31
  • 28
  • 21
  • 15
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Vanadium for flow batteries : a design study

Söderkvist, Christoffer January 2013 (has links)
As society strives to transition for sustainable energy generation is it a major challenge to optimize and develop the renewable energy generation that currently exists, both in terms of individual components and their interactions in the entire energy system. The generation from renewable sources is often irregular and not always when the demand arises. By being able to store the excess energy generated and then deliver it when the demand occur results in a more sustainable energy system. Flow batteries are a possible technology for energy storage. An important component of flow batteries are vanadium and to find methods for extracting vanadium in an economical way is an important step in the development of this technology. The idea behind the thesis was therefore to investigate different extraction methods for vanadium where the most promising methods, from an economic and energy perspective, are examined in more detail. The vanadium should then be used to electrolyte in flow batteries. It has also been examined how the cost is affected by moving a planned facility for extraction from the ashes to a developing country with lower personnel costs. In the thesis was also included to explore similar projects on a larger scale conducted in Sweden, how the view of vanadium is from an EU perspective and how flow batteries can be a part of an energy system. The methods considered most promising is extraction from mineral mining and extraction from ashes. A planned production plant has been dimensioned for both processes of production and energy demand is calculated. The study showed that both processes are expected to produce vanadium below current purchase price, which would then contribute to a cheaper production cost of flow batteries. It turned out that the production of vanadium from ash extraction would be significantly reduced by moving the business to a developing country. The operation stage in the mining operation which accounts for the highest energy demand is the size reduction of the ore. In the extraction process of vanadium from ash, it is primarily the fusion furnace and the fly ash filter required which has the highest energy demand. The similar extraction projects investigated was, from ashes, the so-called SOTEX process in Stenungsund and the mineral mining process had the Ranstad project as reference. The EU approach to vanadium is currently that the metal is not classified as a critical raw material but if economic instability would occur in any of the major manufacturing countries it would be considered as a more critical raw material. Flow batteries functioning as energy storage in a PV hybrid system was investigated and it was concluded that flow batteries are technically well suited for energy storage in this type of system. / Då samhället strävar efter att övergå till en hållbar energiproduktion är det en stor utmaning att effektivisera och utveckla den förnyelsebara energiproduktion som idag finns, både när det gäller enskilda komponenter och deras samspel i hela energisystem. Produktion från förnyelsebara energikällor sker ofta ojämnt och inte alltid när behovet uppstår. Genom att kunna lagra den överskottsenergi som produceras och sedan leverera den då behovet uppstår medför det till ett mer hållbart energisystem. Flödesbatterier är en möjlig teknik för lagring av energi. En viktig komponent i flödesbatterierna är vanadin och att hitta metoder för att utvinna vanadin på ett ekonomiskt sätt är ett viktigt steg i utvecklingen av denna teknik. Idén bakom examensarbetet var därför att kartlägga olika utvinningsmetoder för vanadin där de mest lovande metoderna, från ett ekonomiskt och energi perspektiv, undersöks mer utförligt. Vanadinet i sin tur ska sedan användas till elektrolyt i flödesbatterier. Det har även undersökts hur kostnaden påverkas av att flytta en tänkt anläggning för utvinning ur aska till ett utvecklingsland med lägre personalkostnader. I examensarbetet ingick även att undersöka liknande projekt i större skala som bedrivits i Sverige, hur synen på vanadin är ur ett EU perspektiv samt hur flödesbatterier kan vara en del av ett energisystem. De metoder som ansetts mest lovande är utvinning från mineralbrytning samt utvinning ur aska. En tänkt produktionsanläggning har dimensionerats för båda processer där produktionskostnad och energiförbrukning beräknats. Studien visade att båda processerna förväntas kunna producera vanadin under dagens inköpspris vilket då skulle bidra till en billigare produktionskostnad för flödesbatterier. Det visade sig att produktionen av vanadin ur askutvinning skulle minskas avsevärt genom att flytta verksamheten till ett utvecklingsland. Det moment i gruvdriften som står för största energiförbrukningen är storleksreduceringen av den malm som bryts. Vid processen för utvinning av vanadin ur aska är det främst den smältningsugn samt det filter för flygaska som krävs. De liknande projekt som verkat inom utvinning ur aska var den s.k. SOTEX processen i Stenungsund och för mineralbrytning har Ranstad projektet undersökts. EU:s syn på vanadin är i nuläget att metallen inte klassas som en kritisk råvara men om ekonomisk instabilitet skulle uppstå i något av de större tillverkande länderna skulle råvaran klassas som mer kritisk. Flödesbatteri fungerande som energilagring i ett förnyelsebart energisystem undersöktes där slutsatsen var att flödesbatterier tekniskt sett är mycket väl lämpade som energilagring i denna typ av system.
22

Accumulateurs au plomb-acide méthanesulfonique à circulation d'électrolyte pour les applications photovoltaïques et support des réseaux / Lead/methanesulfonic acid redox flow battery

Oury, Alexandre 16 October 2013 (has links)
Les batteries redox à circulation d'électrolyte constituent une solution prometteuse pour le stockage de masse de l'électricité. Parmi elles, la technologie au plomb soluble dans l'acide méthanesulfonique est intéressante pour son architecture de cellule simplifiée et son faible coût potentiel. Ses performances sont toutefois limitées par l'électrode positive de PbO2 qui implique un faible rendement énergétique et une courte durée de vie des cellules. Le premier objectif de cette thèse est de mieux comprendre les mécanismes électrochimiques en jeu à l'électrode positive. La cinétique de la réaction parasite de production d'oxygène est étudiée. Des mécanismes de dissolution du PbO2 sont proposés et des additifs sont testés pour améliorer sa cyclabilité. Les réponses complexes du potentiel de l'électrode en cyclage galvanostatique sont également interprétées. Le second objectif est de proposer un réacteur innovant comprenant une électrode positive de grande surface spécifique. La structure « nid d'abeilles » est en particulier étudiée. Un réacteur utilisant cette structure est proposé, ses caractéristiques principales sont simulées avec un modèle électrochimique ad hoc, et des prototypes sont fabriquées et testés en cyclage. / Redox-flow batteries are considered as a promising solution for massive electrical storage. In particular, the soluble lead-methanesulfonic acid technology is interesting due to the simple design of the cells and the potentially low associated costs. However some hurdles remain for its development, namely a low energy efficiency as well as a very limited lifetime, both of which being associated with the positive PbO2-electrode. The first goal of this Ph.D. thesis is to provide a better understanding of the electrochemical mechanisms taking place at the positive electrode. The kinetic behaviour of the parasitic oxygen evolution during charging is assessed. Some mechanisms involved in the dissolution of PbO2 are proposed and additives are tested for improving its cyclability. The complex potential responses of the electrode during galvanostatic cycling are also interpreted. The second purpose is to suggest a new reactor comprising a high specific surface area positive electrode. The honeycomb structure is especially studied. A reactor that includes a honeycomb-shaped positive electrode is proposed: its main characteristics are simulated using an electrochemical model and prototypes are fabricated and experimentally tested in cycling.
23

Use of Viologens in Mediated Glucose Fuel Cells and in Aqueous Redox Flow Batteries to Improve Performance

Bahari, Meisam 21 July 2020 (has links)
This dissertation presents my efforts to use viologens to improve the performance of glucose fuel cells and aqueous redox flow batteries. These two electrochemical systems have the potential to efficiently exploit renewable sources of energy. The contributions and significance of this work are briefly described below. Glucose Fuel cells. For glucose fuel cells, viologens were adopted as an electron mediator to facilitate the transfer of electrons from glucose to electrodes for power generation. Use of a mediator circumvents the need for precious metal electrodes to catalyze glucose oxidation. Both the oxidation efficiency and rate of glucose oxidation are important to the viability of glucose fuel cells. Oxidation efficiency is defined as the extent to which the carbons of a carbohydrate (glucose for instance) are oxidized relative to full oxidation to carbon dioxide. The efficiency measured in this study depended on the initial molar ratio of viologen to glucose and also on the rate of the regeneration of the mediator. The maximum conversion efficiency observed was ~22%, which is about three times larger than the values observed for precious-metal-based fuel cells. Rate performance is another important aspect of a glucose fuel cell. Detailed simulations demonstrated that rate performance of viologen-mediated cells was limited principally by mass transfer. The maximum obtainable current density was ~200 mA/cm2, which is significantly higher than the rates available from biological fuel cells and comparable to the values observed for precious-metal-based fuel cells. Viologen-mediated fuel cells offer the potential for higher oxidation efficiency and high current densities at a significantly lower cost. This makes viologen-mediated cells an appealing option for future development of glucose fuel cells. Redox Flow Battery. An asymmetric viologen called MMV was assessed for potential use in aqueous flow batteries to improve performance. With an asymmetric structure, MMV demonstrated one of the most negative redox potentials reported to date for organic electroactive compounds. MMV also showed a relatively high solubility in neutral electrolytes. The electrochemical reaction of MMV involved a reversible single electron transfer with fast kinetics. These characteristics support MMV as a promising anolyte for flow battery applications to improve capacity, energy density, and cell potential. MMV, however, exhibited poor cycling performance at elevated concentrations since it underwent irreversible or partially reversible side reactions. Signs of dimerization and precipitation were observed during cycling. These undesired reactions can be potentially mitigated by synthesizing asymmetric MMV derivatives that possess a higher charge than that possessed by MMV (+1). This modification can reduce the extent of dimerization by increasing repulsive forces between the monomers, and it also has the potential to reduce precipitation by increasing the solubility limit of the compounds.
24

Energy Storage: From Organic Aqueous Redox-flow Battery to Solid-state Lithium Metal Battery

Lai, Yun-Yu 07 May 2022 (has links)
No description available.
25

REDOX ORGANIC DEEP EUTECTIC SOLVENT ELECTROLYTES FOR ADVANCED ENERGY STORAGE

Sinclair, Nicholas January 2022 (has links)
No description available.
26

Application of synthetic tricopper complexes and NOx in energy conversion and storage

Zhang, Weiyao 04 November 2022 (has links)
No description available.
27

Studies on Molecular and Ion Transport in Silicalite Membranes andApplications as Ion Separator for Redox Flow Battery

Yang, Ruidong 10 October 2014 (has links)
No description available.
28

The Electrocatalytic Behavior of Electrostatically Assembled Hybrid Carbon-Bismuth Nanoparticle Electrodes for Energy Storage Applications

Sankar, Abhinandh 27 May 2016 (has links)
No description available.
29

Electrochemical Flow System for Li-Ion Battery Recycling and Energy Storage

Yang, Tairan 09 November 2021 (has links)
The wide applications of energy storage systems in consumer electronics, electric vehicles, and grid storage in the recent decade has created an enormous market globally. The electrochemical flow system has many applications in Li-ion battery recycling and energy storage system design. First, research work on a scalable electrochemical flow system is presented to effectively restore the lithium concentration in end-of-life Li-ion cathode materials. An effective recycling process for end-of-life lithium-ion batteries could relieve the environmental burden and retrieve valuable cathode battery materials. The design is validated in a static configuration with both cathode loose powder and cathode electrode sheet. Materials with comparable electrochemical performance to virgin cathode materials are produced after post heat treatment. Second, research contributions in sulfur-based flow battery systems for long-duration energy storage are presented. Sulfur-based redox flow batteries are promising due to their high theoretical capacity, low cost, and high abundance. The speciation of aqueous sulfur solutions with different nominal concentrations, sulfur concentrations, and pH are studied by Raman spectroscopy. Next, a promising aqueous manganese catholyte to couple with the sulfur anolyte for a full flow battery is investigated. Test protocols and quantification metrics for the catholyte are developed. The stability of the catholyte, including self-discharge rate and precipitation rate, is measured via ex-situ characterizations. The electrochemical performance of the catholyte is investigated and optimized via in-situ experiments. The reaction pathway for the precipitation of catholyte is discussed and several mitigation strategies are proposed. Finally, a semi-solid sodium-sulfur flow battery is developed. The electrochemical performance of the sodium-sulfur battery is studied first in a static configuration at an intermediate temperature (150°C). Then a Na-S semi-solid flow cell is assembled and cycled under the two-aliquots and three-aliquots intermittent flow. / Doctor of Philosophy / The market of energy storage systems has been expanding dramatically in recent years due to their wide applications in portable electronics, electric vehicles, and large-scale grid storage. First, the research on the development of an electrochemical flow system in the Li-ion batteries (LIB) recycling process is presented. The improper disposal of end-of-life LIBs will generate flammable hazardous waste. Recycling spent LIBs could ease the environmental burden and replenish valuable resources such as lithium, cobalt, and nickel, and reduce the cost of battery manufacturing. In this study, an electrochemical flow system is designed to restore the end-of-life cathode materials in LIBs. The design has the potential to scale up and is validated with a static configuration. The recycled materials show comparable electrochemical performance to virgin battery cathode materials. Life cycle analysis shows that the recycling process consumes less energy and is more environmentally friendly. Second, the research contribution in sulfur-based flow battery systems for long-duration energy storage is presented. The aqueous sulfur solutions with different nominal concentrations, sulfur concentrations, and pH are studied by Raman spectroscopy. Next, a promising aqueous manganese catholyte to couple with the sulfur anolyte for a full redox flow battery is investigated. The chemical stability of the catholyte, including self-discharge rate and precipitation rate, is measured via ex-situ characterizations. The electrochemical performance of the catholyte is studied and optimized via in-situ experiments. The reaction mechanisms for the precipitation of aqueous manganese solutions are discussed. Finally, a semi-solid sodium-sulfur (Na-S) flow battery is developed. The electrochemical performance of the sodium-sulfur battery is studied first in a static cell at intermediate temperature. Then a Na-S semi-solid flow cell is demonstrated and cycled under the two-aliquots and three-aliquots intermittent flow.
30

Understanding Coulombic Efficiency Limitations in an Acid-Base Energy Storage System: Mass Transport Through Nafion

Pickering, Jason C., Pickering 31 August 2018 (has links)
No description available.

Page generated in 0.0616 seconds