• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of flow conditions on the stability of flocs

Rushton, Andrew G. January 1990 (has links)
An investigation into aggregate breakage has been carried out using suspensions of uniform polystyrene spheres destabilised by addition of salt or polymer. A controlled flow apparatus was used to expose the suspended aggregates to turbulent pipe flow of variable intensity and duration. Analysis of aggregate size distribution was carried out using the HIAC light obscuration technique.
2

Evaluating the effects of elbows and duct size on the accuracy of hand-held pitot traverse flow measurements

Judy, Christopher Daniel Shon Paul. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains v, 44 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 39-40).
3

Two-phase, two-component critical flow in a Venturi

Smith, R. V. January 1968 (has links)
No description available.
4

Comparing the inviscid and viscous flows in a shock tube to analyze the boundary layer effects

Seitel, Christel M. January 2009 (has links)
Thesis (M.S.)--Rutgers University, 2009. / "Graduate Program in Mechanical and Aerospace Engineering." Includes bibliographical references (p. 105-106).
5

Nonlinear Dynamics of Elastic Filaments Conveying a Fluid and Numerical Applications to the Static Kirchhoff Equations

Beauregard, Matthew Alan January 2008 (has links)
Two problems in the study of elastic filaments are considered.First, a reliable numerical algorithm is developed that candetermine the shape of a static elastic rod under a variety ofconditions. In this algorithm the governing equations are writtenentirely in terms of local coordinates and are discretized usingfinite differences. The algorithm has two significant advantages:firstly, it can be implemented for a wide variety of the boundaryconditions and, secondly, it enables the user to work with generalconstitutive relationships with only minor changes to thealgorithm. In the second problem a model is presented describingthe dynamics of an elastic tube conveying a fluid. First weanalyze instabilities that are present in a straight rod or tubeunder tension subject to increasing twist in the absence of afluid. As the twist is increased beyond a critical value, thefilament undergoes a twist-to-writhe bifurcation. A multiplescales expansion is used to derive nonlinear amplitude equationsto examine the dynamics of the elastic rod beyond the bifurcationthreshold. This problem is then reinvestigated for an elastic tubeconveying a fluid to study the effect of fluid flow on thetwist-to-writhe instability. A linear stability analysisdemonstrates that for an infinite rod the twist-to-writhethreshold is lowered by the presence of a fluid flow. Amplitudeequations are then derived from which the delay of bifurcation dueto finite tube length is determined. It is shown that the delayedbifurcation threshold depends delicately on the length of the tubeand that it can be either raised or lowered relative to thefluid-free case. The amplitude equations derived for the case of aconstant average fluid flux are compared to the case where theflux depends on the curvature. In this latter case it is shownthat inclusion of curvature results in small changes in some ofthe coefficients in the amplitude equations and has only a smalleffect on the post-bifurcation dynamics.
6

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes : temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates.
7

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes. Temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity.

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates. / University of Bradford

Page generated in 0.0751 seconds