Spelling suggestions: "subject:"low inn tubes"" "subject:"low iin tubes""
1 |
The effect of flow conditions on the stability of flocsRushton, Andrew G. January 1990 (has links)
An investigation into aggregate breakage has been carried out using suspensions of uniform polystyrene spheres destabilised by addition of salt or polymer. A controlled flow apparatus was used to expose the suspended aggregates to turbulent pipe flow of variable intensity and duration. Analysis of aggregate size distribution was carried out using the HIAC light obscuration technique.
|
2 |
Evaluating the effects of elbows and duct size on the accuracy of hand-held pitot traverse flow measurementsJudy, Christopher Daniel Shon Paul. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains v, 44 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 39-40).
|
3 |
Two-phase, two-component critical flow in a VenturiSmith, R. V. January 1968 (has links)
No description available.
|
4 |
Comparing the inviscid and viscous flows in a shock tube to analyze the boundary layer effectsSeitel, Christel M. January 2009 (has links)
Thesis (M.S.)--Rutgers University, 2009. / "Graduate Program in Mechanical and Aerospace Engineering." Includes bibliographical references (p. 105-106).
|
5 |
Nonlinear Dynamics of Elastic Filaments Conveying a Fluid and Numerical Applications to the Static Kirchhoff EquationsBeauregard, Matthew Alan January 2008 (has links)
Two problems in the study of elastic filaments are considered.First, a reliable numerical algorithm is developed that candetermine the shape of a static elastic rod under a variety ofconditions. In this algorithm the governing equations are writtenentirely in terms of local coordinates and are discretized usingfinite differences. The algorithm has two significant advantages:firstly, it can be implemented for a wide variety of the boundaryconditions and, secondly, it enables the user to work with generalconstitutive relationships with only minor changes to thealgorithm. In the second problem a model is presented describingthe dynamics of an elastic tube conveying a fluid. First weanalyze instabilities that are present in a straight rod or tubeunder tension subject to increasing twist in the absence of afluid. As the twist is increased beyond a critical value, thefilament undergoes a twist-to-writhe bifurcation. A multiplescales expansion is used to derive nonlinear amplitude equationsto examine the dynamics of the elastic rod beyond the bifurcationthreshold. This problem is then reinvestigated for an elastic tubeconveying a fluid to study the effect of fluid flow on thetwist-to-writhe instability. A linear stability analysisdemonstrates that for an infinite rod the twist-to-writhethreshold is lowered by the presence of a fluid flow. Amplitudeequations are then derived from which the delay of bifurcation dueto finite tube length is determined. It is shown that the delayedbifurcation threshold depends delicately on the length of the tubeand that it can be either raised or lowered relative to thefluid-free case. The amplitude equations derived for the case of aconstant average fluid flux are compared to the case where theflux depends on the curvature. In this latter case it is shownthat inclusion of curvature results in small changes in some ofthe coefficients in the amplitude equations and has only a smalleffect on the post-bifurcation dynamics.
|
6 |
Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes : temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosityPavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates.
|
7 |
Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes. Temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity.Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental
study of the hydrodynamics and heat transfer characteristics
of viscous fluids flowing in tubes under laminar conditions.
Particular attention has been given to the effects of the rheological
properties and their variation with temperature. A review of
problems of this type showed that in spite of the many potential
applications of the results in a wide range of industries
the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge.
The early part of the thesis considers the justification of the
work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the
governing equations of the problem to be solved numerically to
give the velocity and temperature profiles and pressure drop for
both heating and cooling conditions. The results were also
presented in the form of Nusselt numbers as a function of the
Graetz numberp since this form is useful for engineering design
purposes. The validity of the predictions were then checked by a
programme of experimental work. Temperature and velocity profiles
have been measured in order to provide a more severe test of the
theory than could be imposed by the measurement of overall heat
transfer rates. A combined thermocouple probe/Pitot tube was
developed to allow simultaneous measurements of velocity and
temperature to be made. A Newtonian oil and two non-Newtonian
Carbopol solutions were studied. This is the first time that
velocity and temperature profiles have been measured for non-Newtonian
fluids in this type of situation. The results of the work heve shown that
(a) the velocity and temperature profiles and pressure
drops are greatly affected by the temperature dependence
of the rheological properties and since real viscous
fluids are normally very temperature-sensitive it is
important that this effect is properly taken into
account.
(b) the engineering design correlations commonly used for
the prediction of heat transfer coefficients can be
seriously in error, especially for cooling conditions
and when non-Nevitonian fluids are being considered.
(c) a mathematical model can be developed which accurately
describes all the phenomena and gives predictions which
are very close to those observed experimentally. An important objective was to develop more accurate engineering
design correlations for non-isothermal pressure drop and heat
transfer rates. / University of Bradford
|
Page generated in 0.0868 seconds