• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermocapillary effects in thin-film flows

Holland, David January 2002 (has links)
No description available.
2

Validation of computational fluid-structure interaction models by comparison with collapsible tube experiments

Scroggs, Richard A. January 2002 (has links)
The objective of this thesis was to assess the validity of the fluid-structure interaction (FSI) facilities in LS-DYNA for the analysis of highly deformable structures interacting with flowing viscous fluids. The collapsible tube experiment was chosen as a validation tool for FSI since its three-dimensional computational modelling would have been impossible if the viscous internal fluid flow were not considered. An explicit three-dimensional finite element model of a collapsible-tube was constructed and solved using LS-DYNA. The fully coupled model included internal fluid flow; external, inlet and outlet pressures; tube wall tension; pre-stressing; and contact. The finite element boundary conditions were taken as the recorded values of flow rate and pressure from a standard collapsible-tube experiment for both steady and unsteady flows. The predicted tube geometry in the steady LS-DYNA model showed good agreement with the experiment for operating points in the highly compliant region of the pressure-flow characteristic curve. The comparative position of the pinch at the outlet end differed by only 5.6% of the outlet diameter in the worst case. This analysis represents an advance on other published work in that previously no comparison with experiments have been drawn for FSI models involving high Reynolds number flowing viscous fluids interacting with highly deformable three dimensional structures. This analysis successfully made that comparison and the experimental and computational results have combined to form a more detailed picture of the collapsible-tube phenomenon by including detailed stress results of the tube walls and views of the internal fluid flow. The collapsible tube model exhibited uncertainty errors due to the use of a coarser than desirable mesh and a reduced fluid speed of sound. Although both these approximations caused significant error in the model both were necessary in order to achieve acceptable solution times. Because of these errors a thorough quantitative validation could not be achieved although LS-DYNA has been proven to be qualitatively accurate. Increases in computing speed are required before thorough quantitative validation of FSI can be achieved by comparison with the collapsible tube experiments.
3

Vortex cloud modelling for axisymmetric flows

Ming, Li January 1995 (has links)
No description available.
4

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes : temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates.
5

Superposition d’écoulements orthogonaux dans des fluides complexes : mise en place de l’expérience, application aux suspensions et aux fluides à seuil / Superimposition of orthogonal flows in complex fluids : set-up of the experiment, application to suspensions and yield stress fluids.

Barral, Quentin 02 December 2011 (has links)
La relation scalaire entre contrainte et déformation obtenue par le cisaillement simple dans les rhéomètres classiques n'est pas assez riche pour décrire les écoulements complexes. Pour obtenir plus d'information, nous superposons deux écoulements orthogonaux en utilisant la géométrie plan-plan. Le fluide, sous forme cylindrique, peut alors être cisaillé par la rotation mais aussi écrasé par le rapprochement (ou étiré par l'éloignement) des disques. Nous détaillons les calculs théoriques permettant de déterminer les liens entre contraintes et taux de cisaillement et les efforts et vitesses macroscopiques associés. Ensuite, nous décrivons précisément le dispositif expérimental mis en place pour imposer toutes sortes d'écoulements combinant des cisaillements stationnaires ou oscillants, en rotation ou en écrasement. Puis nous présentons les résultats de la comparaison entre l'écoulement de rotation et l'écoulement d'écrasement. Nous présentons enfin les expériences de superposition des deux écoulements. Nous créons des écoulements complexes et divers afin, entre autres, de mesurer et comprendre la loi d'écoulement 3D et le critère d'écoulement 3D des fluides à seuil / The scalar relation between stress and strain obtained by simple shear within classical rheometers is not rich enough to describe complex flows. To obtain more information, we shall superimpose two orthogonal flows and for that, we shall use the parallel-plate geometry. The volume of fluid has a cylindrical shape and can be sheared by the rotation of a plate or squeezed by the move closer (or stretched by the move away) of the plates. We detail theoretical considerations that allow us to determine the link between stresses and shear rates and associated macroscopic efforts and velocities. Then we precisely describe the experimental setup developed to impose all kind of flows : steady or oscillating flows, rotation or squeeze. After that, we present the results of comparison between rotational and squeeze flow. Finally, we present the experiments with both superimposed flows. We create complex flows to measure and understand, among others, 3D behavior and 3D flow criteria of yield stress fluids
6

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes. Temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity.

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates. / University of Bradford
7

Study of rigid solids movement in a viscous fluid / Etude du mouvement de solides rigides dans un fluide visqueux

Sabbagh, Lamis Marlyn Kenedy 22 November 2018 (has links)
Cette thèse est consacrée à l’analyse mathématique du problème du mouvement d’un nombre fini de corps rigides homogènes au sein d’un fluide visqueux incompressible homogène. Les fluides visqueux sont classés en deux catégories: les fluides newtoniens et les fluides non newtoniens. En premier lieu, nous considérons le système formé par les équations de Navier Stokes incompressible couplées aux lois de Newton pour décrire le mouvement de plusieurs disques rigides dans un fluide newtonien visqueux homogène dans l’ensemble de l’espace R^2. Nous montrons que ce problème est bien posé jusqu’à l’apparition de la première collision. Ensuite, nous éliminons tous les types de contacts pouvant survenir si le domaine fluide reste connexe à tout moment. Avec cette hypothèse, le système considéré est globalement bien posé. Dans la deuxième partie de cette thèse, nous montrons la non-unicité des solutions faibles au problème d’interaction fluide-solide 3D, dans le cas d’un fluide newtonien, après collision. Nous montrons qu’il existe des conditions initiales telles que nous pouvons étendre les solutions faibles après le temps pour lequel le contact a eu lieu de deux manières différentes. Enfin, dans la dernière partie, nous étudions le mouvement bidimensionnel d’un nombre fini de disques immergés dans une cavité remplie d’un fluide viscoélastique tel que des solutions polymériques. Les équations de Navier Stokes incompressible sont utilisées pour modéliser le solvant, dans lesquelles un tenseur de contrainte élastique supplémentaire apparaît comme un terme source. Dans cette partie, nous supposons que le tenseur de contrainte supplémentaire satisfait la loi différentielle d’Oldroyd ou sa version régularisée. Dans les deux cas, nous prouvons l’existence et l’unicité des solutions fortes locales en temps du problème considéré. / This thesis is devoted to the mathematical analysis of the problem of motion of afinite number of homogeneous rigid bodies within a homogeneous incompressible viscous fluid. Viscous fluids are classified into two categories: Newtonian fluids, and non-Newtonian fluids. First, we consider the system formed by the incompressible Navier-Stokes equations coupled with Newton’s laws to describe the movement of several rigid disks within a homogeneous viscous Newtonian fluid in the whole space R^2. We show the well-posedness of this system up to the occurrence of the first collision. Then we eliminate all type of contacts that may occur if the fluid domain remains connected at any time. With this assumption, the considered system is well-posed globally in time. In the second part of this thesis, we prove the non-uniqueness of weak solutions to the fluid-rigid body interaction problem in 3D in Newtonian fluid after collision. We show that there exist some initial conditions such that we can extend weak solutions after the time for which contact has taken place by two different ways. Finally, in the last part, we study the two-dimensional motion of a finite number of disks immersed in a cavity filled with a viscoelastic fluid such as polymeric solutions. The incompressible Navier–Stokes equations are used to model the flow of the solvent, in which the elastic extra stress tensor appears as a source term. In this part, we suppose that the extra stress tensor satisfies either the Oldroyd or the regularized Oldroyd constitutive differential law. In both cases, we prove the existence and uniqueness of local-in-time strongsolutions of the considered moving-boundary problem.

Page generated in 0.0555 seconds