Spelling suggestions: "subject:"low system"" "subject:"flow system""
31 |
Vývoj nových elektrochemických metod s využitím různých membránových materiálů pro sledování vybraných protinádorových léčiv a fytochelatinů / Development of Novel Electrochemical Methods Using Various Membrane Materials for Monitoring of Selected Anticancer Drugs and PhytochelatinsSkalová, Štěpánka January 2019 (has links)
Present Ph.D. Thesis is focused on the development of electrochemical methods for determination of anticancer drugs using various types of membranes for their preliminary separation. Furthermore, this Thesis reports the study of transport mechanisms of heavy metals in the presence of phytochelatins across biological membranes. Sodium anthraquinone-2-sulphonate (AQS) was used as a model compound for its similar structure with anthraquinone-based (AQ-based) anticancer drugs (doxo/daunorubicin) and also due to its better availability. All these compounds can be easily electrochemically oxidized and/or reduced. Redox behaviour of AQS was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in a cathodic region on mercury meniscus modified (m-AgSAE) and polished silver solid amalgam (p-AgSAE) electrodes, Obtained results were used for the development of a micro-volume voltammetric cell (MVVC). Its applicability for voltammetric determination of anticancer drugs was verified by using doxorubicin (DX) as a model substance. The second part of this Thesis deals with therapeutic monitoring of anticancer drugs in the blood circulation of the patients. For pilot experiments, a liquid-flow system with dialysis catheter and amperometric detection was used. The flow rate of carrier...
|
32 |
Využití radikálového značení bílkovin pro strukturní biologii / Utilization of protein radical foootprinting for stuctural biologyPolák, Marek January 2020 (has links)
(In English) The reaction of highly reactive oxygen radicals with protein solvent-accessible residues can be utilized to map protein landscape. Fast photochemical oxidation of proteins (FPOP) is an MS- based technique, which utilizes highly reactive radical species to oxidize proteins and map protein surface or its interactions with their interaction partners. In this work, FPOP was employed to study protein-DNA interactions. First, a full-length of FOXO4-DBD was successfully expressed and purified. The ability of the protein to bind its DNA-response element was verified by electrophoretic and MS-based techniques, respectively. Optimal experimental conditions were achieved to oxidize the protein itself and in the presence of DNA, respectively. Oxidized samples were analyzed by bottom-up and top-down approach. In the bottom-up experiment, modification of individual residues was precisely located and quantified. Different extend of modification was observed for protein alone and in complex with DNA. To avoid experimental artifacts analyzing multiply oxidized protein, standard bottom up approach was replaced by a progressive top-down technology. Only a singly oxidized protein ion was isolated, and further fragmented by collision-induced dissociation (CID) and electron-capture dissociation (ECD),...
|
33 |
Využití potenciálových programů při průtokovém elektrochemickém stanovení biologicky aktivních organických látek / Utilization of potential programs in flow electrochemical determination of biologically active organic compoundsBavol, Dmytro January 2018 (has links)
9 Abstract In this Ph.D. thesis possibilities of using our proposed potential programs for a multiple-pulse amperometry and a fast scan differential pulse voltammetry in combination with flow systems are presented. The development of new sensitive amperometric and voltammetric methods for the determination of oxidisable biologically active organic compounds is another aim of this work. In the first part of the work, the flow injection system and multiple-pulse amperometric detection were employed to develop and optimize a simple, low-cost, and rapid method for the simultaneous determination of natural and synthetic antioxidants. This technique involves the application of an appropriate potential waveform consisting of a suitable sequence of pulses on a single working electrode, thus allowing distinguish the analytes in a mixture with no need of separation. Conditions for the determination of antioxidants and modelling of the potential program were tested and studied, respectively. Second part of the work describes and characterizes the application of the fast scan differential pulse voltammetry (FSDPV) in combination with the flow systems. FSDPV is the electroanalytical technique that use high scan rate to record voltammograms within several milliseconds and ensures high temporal resolution. This technique...
|
Page generated in 0.07 seconds