• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis Of Mfi Type Zeolite Membranes In A Continuous System

Culfaz, Pinar Zeynep 01 July 2005 (has links) (PDF)
MFI type zeolites, are the most widely studied zeolites for membrane separations. Conventionally, zeolite membranes are prepared in batch systems by hydrothermal synthesis in autoclaves. This method has several disadvantages for use in industrial scale for the synthesis of membranes with large areas and complex geometries that are commonly used in membrane modules. The objective of this study is to prepare MFI type zeolite membranes on tubular alumina supports in a continuous system where the synthesis solution is circulated through the tubular supports. Syntheses were carried out using clear solutions, at atmospheric pressure and at temperatures below 100&deg / C. The membranes were characterized by N2, SF6, n-butane and isobutane permeances, X-ray diffraction and scanning electron microscopy. A 2-&amp / #956 / m membrane was synthesized using the composition 80SiO2: 16TPAOH: 1536H2O at 95&deg / C in the continuous system. The membrane showed N2 permeance of 4.4 x 10-7 mol/m2.s.Pa and N2/SF6 selectivity of 11. The membrane synthesized in the batch system showed a N2 permeance of 3.4 x 10-7 mol/m2.s.Pa and a N2/SF6 selectivity of 27. Both membranes showed n-butane/isobutane mixture (50%-50%) selectivities of about 6 at temperatures of 150 and 200&deg / C. Among many zeolite membranes reported in literature, these membranes are one of the few zeolite membranes synthesized in a flow system and the first MFI type membranes synthesized in a continuous flow system with circulation of the synthesis solution. The permeances and selectivities of the membranes synthesized in the continuous system are comparable with the MFI type membranes synthesized in batch systems in literature.
12

Synthesis Of Zeolite Membranes In Flow System

Onder, Aylin 01 October 2012 (has links) (PDF)
Zeolite membranes are formed as a thin zeolitic layer on the supports. They are usually synthesized by hydrothermal methods in batch systems. In this study, MFI and SAPO-34 type zeolite membranes were produced on macroporous tubular alumina supports in a recirculating flow system at elevated temperatures for the first time in the literature. During the synthesis, the synthesis mixture is flown between the reservoir and the membrane module which includes the support material. The synthesis temperatures were 180&deg / C and 220&deg / C, and the corresponding system pressures were approximately 20 and 30 bars for MFI and SAPO-34, respectively. The CH4 and n-C4H10 single gas permeances were measured through MFI membranes and the performance of membranes was investigated in the separation of equimolar CH4/n-C4H10 mixtures. The best MFI membrane had a CH4 single gas permeance of 1.45x10-6 mol/m2-s-Pa and CH4/n-C4H10 ideal selectivity of 35 at 25oC. The membranes preferentially permeated n-C4H10 in the separation of mixtures. The n-C4H10/CH4 separation selectivity was 43.6 with a total permeance of approximately 0.8x10-6 mol/m2-s-Pa at 25oC. The ideal selectivities of CO2/CH4 of SAPO-34 membrane synthesized in stagnant medium were 227, and &gt / 1000 at 220 and 200oC, respectively. Formation of amorphous structure and the additional secondary phases (impurities) were observed on SAPO-34 membranes synthesized in recirculating flow system. The results showed that it is possible to produce SAPO-34 and high quality MFI membranes by a recirculating flow system operating at elevated temperature.
13

Použití Persterilu v praxi k prevenci mykóz jiker ryb a jeho účinnost v antiparazitálních koupelích kaprovitých ryb v porovnání s užívanými přípravky / Practical use of Persteril for the prevention of fungal infections of fish roe and its effectiveness in antiparasitic baths cyprinids compared with used liquids

FOŘT, Ondřej January 2011 (has links)
Persteril (Acidum peraceticum) is a trademark used for a disinfectant with peracetic acid as an active ingredient. It is highly effective biocide and has extensive application possibilities with regard to environmental friendliness, it also has the widest range of disinfection efficacy. The practical part took place in the Genetic centre hatchery at the FROV JU in Vodnany. Persteril? was used for Short-time bath followed by rearing roe in the recirculating system and for short-time bath followed by rearing roe in the flow system. Both versions are breeding quite well; Persteril? detects fungal infection of fish roe in comparison with other liquids, as well as it leaves smaller or no residue in the water or out of the water until the evaporation (according to the concentration).
14

Platforms and Molecular Mechanisms for Improving Signal Transduction and Signal Enhancement in Multi-step Point-Of-Care Diagnostics

Kaleb M. Byers (11192533) 28 July 2021 (has links)
<p>Swift recognition of disease-causing pathogens at the point-of-care enables life-saving treatment and infection control. However, current rapid diagnostic devices often fail to detect the low concentrations of pathogens present in the early stages of infection, causing delayed and even incorrect treatments. Rapid diagnostics that require multiple steps and/or elevated temperatures to perform have a number of barriers to use at the point-of-care and in the field, and despite efforts to simplify these platforms for ease of use, many still require diagnostic-specific training for the healthcare professionals who use them. Most nucleic acid amplification assays require hours to perform in a sterile laboratory setting that may be still more hours from a patient’s bedside or not at all feasible for transport in remote or low-resourced areas. The cold-chain storage of reagents, multistep sample preparation, and costly instrumentation required to analyze samples has prohibited many nucleic acid detection and antibody-based assays from reaching the point-of-care. There remains a critical need to bring rapid and accessible pathogen identification technologies that determine disease status and ensure effective treatment out of the laboratory.</p> <p>Paper-based diagnostics have emerged as a portable platform for antigen and nucleic acid detection of pathogens but are often limited by their imperfect control of reagent incubation, multiple complex steps, and inconsistent false positive results. Here, I have developed mechanisms to economically improve thermal incubations, automate dried reagent flow for multistep assays, and specifically detect pathogenic antigens while improving final output sensitivity on paper-based devices. First, I characterize miniaturized inkjet printed joule-heaters (microheaters) that enable thermal control for pathogen lysis and nucleic acid amplification incubation on a low-cost paper-based device. Next, I explore 2-Dimensional Paper Networks as a means to automate multistep visual enhancement reactions with dried reagents to increase the sensitivity and readability of nucleic acid detection with paper-based devices. Lastly, I aim to create a novel Reverse-Transcription Recombinase Polymerase Reaction mechanism to amplify and detect a specific region of the Spike protein domain of SARS-CoV-2. This will allow the rapid detection of SARS-CoV-2 infections to aid in managing the current COVID-19 pandemic. In the future, these tools could be integrated into a rapid diagnostic test for SARS-CoV-2 and other pathogens, ultimately improving the accessibility and sensitivity of rapid diagnostics on multiple fronts.</p>
15

QUANTIFYING RECHARGE DURING THE LAST GLACIAL MAXIMUM IN THE DEATH VALLEY REGIONAL FLOW SYSTEM

Hecker, Joel W. 06 August 2012 (has links)
No description available.
16

Use of Time Series Analysis to Evaluate the Impacts of Underground Mining on Hydrological Properties of Dysart Woods, Ohio

Zhang, Qian 23 September 2010 (has links)
No description available.
17

Experimental studies on displacements of CO₂ in sandstone core samples

Al-Zaidi, Ebraheam Saheb Azeaz January 2018 (has links)
CO2 sequestration is a promising strategy to reduce the emissions of CO2 concentration in the atmosphere, to enhance hydrocarbon production, and/or to extract geothermal heat. The target formations can be deep saline aquifers, abandoned or depleted hydrocarbon reservoirs, and/or coal bed seams or even deep oceanic waters. Thus, the potential formations for CO2 sequestration and EOR (enhanced oil recovery) projects can vary broadly in pressure and temperature conditions from deep and cold where CO2 can exist in a liquid state to shallow and warm where CO2 can exist in a gaseous state, and to deep and hot where CO2 can exist in a supercritical state. The injection, transport and displacement of CO2 in these formations involves the flow of CO2 in subsurface rocks which already contain water and/or oil, i.e. multiphase flow occurs. Deepening our understanding about multiphase flow characteristics will help us building models that can predict multiphase flow behaviour, designing sequestration and EOR programmes, and selecting appropriate formations for CO2 sequestration more accurately. However, multiphase flow in porous media is a complex process and mainly governed by the interfacial interactions between the injected CO2, formation water, and formation rock in host formation (e.g. interfacial tension, wettability, capillarity, and mass transfer across the interface), and by the capillary , viscous, buoyant, gravity, diffusive, and inertial forces; some of these forces can be neglected based on the rock-fluid properties and the configuration of the model investigated. The most influential forces are the capillary ones as they are responsible for the entrapment of about 70% of the total oil in place, which is left behind primary and secondary production processes. During CO2 injection in subsurface formations, at early stages, most of the injected CO2 (as a non-wetting phase) will displace the formation water/oil (as a wetting phase) in a drainage immiscible displacement. Later, the formation water/oil will push back the injected CO2 in an imbibition displacement. Generally, the main concern for most of the CO2 sequestration projects is the storage capacity and the security of the target formations, which directly influenced by the dynamic of CO2 flow within these formations. Any change in the state of the injected CO2 as well as the subsurface conditions (e.g. pressure, temperature, injection rate and its duration), properties of the injected and present fluids (e.g. brine composition and concentration, and viscosity and density), and properties of the rock formation (e.g. mineral composition, pore size distribution, porosity, permeability, and wettability) will have a direct impact on the interfacial interactions, capillary forces and viscous forces, which, in turn, will have a direct influence on the injection, displacement, migration, storage capacity and integrity of CO2. Nevertheless, despite their high importance, investigations have widely overlooked the impact of CO2 the phase as well as the operational conditions on multiphase characteristics during CO2 geo-sequestration and CO2 enhanced oil recovery processes. In this PhD project, unsteady-state drainage and imbibition investigations have been performed under a gaseous, liquid, or supercritical CO2 condition to evaluate the significance of the effects that a number of important parameters (namely CO2 phase, fluid pressure, temperature, salinity, and CO2 injection rate) can have on the multiphase flow characteristics (such as differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The study sheds more light on the impact of capillary and viscous forces on multiphase flow characteristics and shows the conditions when capillary or viscous forces dominate the flow. Up to date, there has been no such experimental data presented in the literature on the potential effects of these parameters on the multiphase flow characteristics when CO2 is injected into a gaseous, liquid, or supercritical state. The first main part of this research deals with gaseous, liquid, and supercritical CO2- water/brine drainage displacements. These displacements have been conducted by injecting CO2 into a water or brine-saturated sandstone core sample under either a gaseous, liquid or supercritical state. The results reveal a moderate to considerable impact of the fluid pressure, temperature, salinity and injection rate on the differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The results show that the extent and the trend of the impact depend significantly on the state of the injected CO2. For gaseous CO2-water drainage displacements, the results showed that the extent of the impact of the experimental temperature and CO2 injection rate on multiphase flow characteristics, i.e. the differential pressure profile, production profile (i.e. cumulative produced volumes), endpoint relative permeability of CO2 (KrCO2) and residual water saturation (Swr) is a function of the associated fluid pressure. This indicates that for formations where CO2 can exist in a gaseous state, fluid pressure has more influence on multiphase flow characteristics in comparison to other parameters investigated. Overall, the increase in fluid pressure (40-70 bar), temperature (29-45 °C), and CO2 injection rate (0.1-2 ml/min) caused an increase in the differential pressure. The increase in differential pressure with increasing fluid pressure and injection rate indicate that viscous forces dominate the multi-phase flow. Nevertheless, increasing the differential pressure with temperature indicates that capillary forces dominate the multi-phase flow as viscous forces are expected to decrease with this increasing temperature. Capillary forces have a direct impact on the entry pressure and capillary number. Therefore, reducing the impact of capillary forces with increasing pressure and injection rate can ease the upward migration of CO2 (thereby, affecting the storage capacity and integrity of the sequestered CO2) and enhance displacement efficiency. On the other hand, increasing the impact of the capillary force with increasing temperature can result in a more secure storage of CO2 and a reduction in the displacement efficiency. Nevertheless, the change in pressure and temperature can also have a direct impact on storage capacity and security of CO2 due to their impact on density and hence on buoyancy forces. Thus, in order to decide the extent of change in storage capacity and security of CO2 with the change in the above-investigated parameters, a qualitative study is required to determine the size of the change in both capillary forces and buoyancy forces. The data showed a significant influence of the capillary forces on the pressure and production profiles. The capillary forces produced high oscillations in the pressure and production profiles while the increase in viscous forces impeded the appearance of these oscillations. The appearance and frequency of these oscillations depend on the fluid pressure, temperature, and CO2 injection rate but to different extents. The appearance of the oscillations can increase CO2 residual saturation due to the re-imbibition process accompanied with these oscillations, thereby increasing storage capacity and integrity of the injected CO2. The differential pressure required to open the blocked flow channels during these oscillations can be useful in calculating the largest effective pore diameters and hence the sealing efficiency of the rock. Swr was in ranges of 0.38-0.42 while KrCO2 was found to be less than 0.25 under our experimental conditions. Increasing fluid pressure, temperature, and CO2 injection rate resulted in an increase in the KrCO2, displacement efficiency (i.e. a reduction in the Swr), and cumulative produced volumes. For liquid CO2-water drainage displacements, the increase in fluid pressure (60-70 bar), CO2 injection rate (0.4-1ml/min) and salinity (1% NaCl, 5% NaCl, and 1% CaCl2) generated an increase in the differential pressure; the highest increase occurred with increasing the injection rate and the lowest with increasing the salinity. On the other hand, on the whole, increasing temperature (20-29 °C) led to a reduction in the differential pressure apart from the gradual increase occurred at the end of flooding.
18

Modellierung modularer Materialfluss-Systeme mit Hilfe von künstlichen neuronalen Netzen / Modelling of material flow systems with artificial neural networks

Markwardt, Ulf 23 October 2004 (has links) (PDF)
Materialfluss-Systeme für den Stückgut-Transport auf der Basis von Stetigförderern sind meist modular aufgebaut. Das Verhalten gleichartiger Materialfluss-Elemente unterscheidet sich durch technische Parameter (z.B. geometrische Größen) und durch unterschiedliche logistische Belastungen der Elemente im System. Durch die in der Arbeit getroffenen Modellannahmen werden für die Elemente nur lokale Steuerungsregeln zugelassen und für das System Blockierfreiheit vorausgesetzt. Das Verhalten eines Materialfluss-Elements hängt dann nicht mehr von Zuständen anderer Elemente des Systems ab sondern nur noch von den stochastischen Prozessen des Eintreffens von Transporteinheiten. Die Auslastung eines Elements, die Quantile der Warteschlangenlängen an seinen Eingängen und die Variationskoeffizienten seiner Abgangsströme sind statistische Kenngrößen. Sie hängen im Wesentlichen nur von der Klasse des Elements, seinen technischen Parametern, den Parametern der Eingangsströme und der lokalen Transportmatrix ab. Diese funktionellen Abhängigkeiten sind im Allgemeinen nicht analytisch handhabbar. Da diese Funktionen stetig differenzierbar und beschränkt sind und von relativ viele Eingansgrößen anhängen, sind neuronale Netze gut geeignet für numerische Näherungen. Mit Hilfe von einfachen neuronalen Netzen können die statistischen Kenngrößen numerisch approximiert werden. Aus einzelnen Teilmodellen kann ein hybrides Modell des gesamten Systems zusammengesetzt werden. Anhand von einigen Beispielen wird die Güte der Modellierung bewertet. / Material flow systems are normally built with a modular structure. The behavoir of similar elements only differs by technical parameters (e.g. geometriy), and by different logistic loads of the elements in the system. In this paper, a new model is being developed for a non-blocking system with non-global control rules. The behavior of a flow of a material flow element is assumed not to depend on the conditions of other elements of the system, but only on stochastic processes of the arrival of transportation units. The rate of utilization of an element, the quantiles of the queue lengths at its inputs, and the dispersion of its output stream are statistic characteristics. They depend only on the type of the element, its technical parameters, the parameters of the input streams, and the local transportation matrix. These functional dependencies are not analytically manageable. But due to their properties, neural nets are well suited for numeric approximations of these statistic functions. The single models can be used to compose a hybrid model of the whole system. A few examples show the quality of the new modeling technique.
19

Modellierung modularer Materialfluss-Systeme mit Hilfe von künstlichen neuronalen Netzen

Markwardt, Ulf 29 September 2004 (has links)
Materialfluss-Systeme für den Stückgut-Transport auf der Basis von Stetigförderern sind meist modular aufgebaut. Das Verhalten gleichartiger Materialfluss-Elemente unterscheidet sich durch technische Parameter (z.B. geometrische Größen) und durch unterschiedliche logistische Belastungen der Elemente im System. Durch die in der Arbeit getroffenen Modellannahmen werden für die Elemente nur lokale Steuerungsregeln zugelassen und für das System Blockierfreiheit vorausgesetzt. Das Verhalten eines Materialfluss-Elements hängt dann nicht mehr von Zuständen anderer Elemente des Systems ab sondern nur noch von den stochastischen Prozessen des Eintreffens von Transporteinheiten. Die Auslastung eines Elements, die Quantile der Warteschlangenlängen an seinen Eingängen und die Variationskoeffizienten seiner Abgangsströme sind statistische Kenngrößen. Sie hängen im Wesentlichen nur von der Klasse des Elements, seinen technischen Parametern, den Parametern der Eingangsströme und der lokalen Transportmatrix ab. Diese funktionellen Abhängigkeiten sind im Allgemeinen nicht analytisch handhabbar. Da diese Funktionen stetig differenzierbar und beschränkt sind und von relativ viele Eingansgrößen anhängen, sind neuronale Netze gut geeignet für numerische Näherungen. Mit Hilfe von einfachen neuronalen Netzen können die statistischen Kenngrößen numerisch approximiert werden. Aus einzelnen Teilmodellen kann ein hybrides Modell des gesamten Systems zusammengesetzt werden. Anhand von einigen Beispielen wird die Güte der Modellierung bewertet. / Material flow systems are normally built with a modular structure. The behavoir of similar elements only differs by technical parameters (e.g. geometriy), and by different logistic loads of the elements in the system. In this paper, a new model is being developed for a non-blocking system with non-global control rules. The behavior of a flow of a material flow element is assumed not to depend on the conditions of other elements of the system, but only on stochastic processes of the arrival of transportation units. The rate of utilization of an element, the quantiles of the queue lengths at its inputs, and the dispersion of its output stream are statistic characteristics. They depend only on the type of the element, its technical parameters, the parameters of the input streams, and the local transportation matrix. These functional dependencies are not analytically manageable. But due to their properties, neural nets are well suited for numeric approximations of these statistic functions. The single models can be used to compose a hybrid model of the whole system. A few examples show the quality of the new modeling technique.
20

"Calibração multivariada e cinética diferencial em sistemas de análises em fluxo com detecção espectrofotométrica" / "Multivariate calibration and differential kinetic analysis in flow systems with spectrophotometric detection"

Fortes, Paula Regina 19 June 2006 (has links)
A associação dos métodos cinéticos de análises e dos sistemas de análises em fluxo foi demonstrada em relação à determinação espectrofotométrica de ferro e vanádio em ligas Fe-V O método se baseia na influência de Fe2+ e VO2+ na taxa de oxidação de iodeto por dicromato sob condições ácidas; por esta razão o emprego do redutor de Jones foi necessário. Um sistema de análises por injeção em fluxo (FIA) e um sistema multi-impulsão foram dimensionados e avaliados. Em ambos os sistemas, a solução da amostra era inserida no fluxo transportador / reagente iodeto, e a solução de dicromato era adicionada por confluência. Sucessivas medidas eram realizadas durante a passagem da zona de amostra processada pelo detector, cada uma relacionada a uma diferente condição para o desenvolvimento da reação. O tratamento dos dados envolveu calibração multivariada, particularmente o algorítmo PLS. O sistema FIA se mostrou pouco adequado para as determinações multi-paramétricas, uma vez que os elementos de fluído resultantes da natureza de escoamento laminar não continham informações cinéticas suficientes para compor as etapas de modelagem. Por outro lado, MPFS mostrou que a natureza do fluxo pulsado resulta em melhorias nas figuras de mérito devido ao movimento caótico dos elementos de fluído. O sistema proposto é simples e robusto, capaz de analisar 50 amostras por hora, significando em um consumo de 48 mg KI por determinação. A duas primeiras variáveis latentes contém ca 94 % da informação analítica, mostrando que a dimensionalidade dupla intrínsica ao conjunto de dados. Os resultados se apresentaram concordantes com aqueles obtidos por espectrometria de emissão optica com plasma induzido em argônio. / Differential kinetic analysis can be implemented in a flow system analyser, and this was demonstrated in designing an improved spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relied on the influence of Fe2+ and VO2+ on the rate of the iodide oxidation by Cr2O7 under acidic conditions; therefore the Jones reductor was needed. To this end, a flow injection system (FIA) and a multi-pumping flow system (MPFS) were dimensioned and evaluated. In both systems, the alloy solution was inserted into an acidic KI solution that acted also as carrier stream, and a dichromate solution was added by confluence. Successive measurements were performed during sample passage through the detector, each one related to a different yet reproducible condition for reaction development. Data treatment involved multivariate calibration by the PLS algorithm. The FIA system was less recommended for multi-parametric determination, as the laminar flow regimen could not provide suitable kinetic information. On the other hand, a MPFS demonstrated that pulsed flow led to enhance figures of merit due to chaotic movement of its fluid elements. The proposed MPFS system is very simple and rugged, allowing 50 samples to be run per hour, meaning 48 mg KI per determination. The first two latent variables carry ca 94 % of the analytical information, pointing out that the intrinsic dimensionality of the data set is two. Results are in agreement with inductively coupled argon plasma – optical emission spectrometry.

Page generated in 0.1282 seconds