• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the use of hierarchical modulation for resource allocation in OFDMA-based networks

Jdidi, Anis 03 November 2011 (has links) (PDF)
We investigate, in this thesis, the use of Hierarchical Modulation (HM), a physical layer technique that enables to exploit multiuser diversity, for resource allocation in OFDMA-based systems with and without use of relaying, so as to improve the system capacity. HM allows the sharing of the resources, namely subcarriers and power, between users of different radio conditions by sending an additional stream to a user with good radio conditions on a subcarrier that was initially allocated to carry an original stream to a user with lower radio conditions. And this, without affecting the original user's rate nor the total amount of power assigned to the shared subcarrier. In the literature, most of the works that consider the use of HM focus solely on the physical layer performance, notably in terms of the bit error rate. And this for a static user scenario,i.e., with a fixed number of users in the system, each with an infinite service duration. This configuration however does not reflect the real system behavior where the number of users is dynamic, i.e., the users come to the system at random time epochs and leave it after a finite duration, corresponding to the completion of their services. The study of the system at the flow-level, as opposed to the packet level, for a dynamic user configuration, enables us to investigate the realistic relationship between capacity and demand and to quantify several system-level performance metrics, such as mean transfer times and blocking rates, which are meaningful both to the user and the network operator/provider.
2

On the use of hierarchical modulation for resource allocation in OFDMA-based networks / Utilisation de la modulation hiérarchique dans l'allocation des ressources dans les systèmes OFDMA

Jdidi, Anis 03 November 2011 (has links)
Nous proposons dans cette thèse d'exploiter la Modulation Hiérarchique (MH) dans un système OFDMA avec et sans utilisation des relais en vue d'améliorer d'avantage la capacité du système en tirant profit de la diversité d'utilisateurs. MH permet de transmettre un flux supplémentaire à un utilisateur de bonnes conditions radio sur une sous-porteuse initialement allouée à un utilisateur de mauvaises conditions radio. Ceci est différent des techniques classiques d’allocation de ressources proposées dans la littérature qui respectent une orthogonalité parfaite lors de l'allocation : une sous-porteuse est allouée à un seul utilisateur et aucun autre utilisateur ne pourra l'utiliser en même temps. Dans la littérature, la plupart des travaux qui se sont intéressés à l'utilisation de la MH se sont concentrés seulement sur les performances en termes de couche basse avec un nombre fixe d'utilisateurs dans le système correspondant à une configuration statique. Toutefois, cette configuration ne reflète pas la dynamicité du nombre d'utilisateurs dans un tel système, où les utilisateurs arrivent selon une loi aléatoire et partent après avoir fini leurs services. Dans cette thèse, nous exposons l'étude des performances de l'utilisation de la MH avec des configurations dynamiques d'utilisateurs correspondant à une étude au niveau flux. Cela nous permet d'évaluer les performances en termes de nouvelles métriques à savoir le temps moyen de transfert et la probabilité de blocage qui sont importantes pour l'utilisateur et pour l'opérateur. / We investigate, in this thesis, the use of Hierarchical Modulation (HM), a physical layer technique that enables to exploit multiuser diversity, for resource allocation in OFDMA-based systems with and without use of relaying, so as to improve the system capacity. HM allows the sharing of the resources, namely subcarriers and power, between users of different radio conditions by sending an additional stream to a user with good radio conditions on a subcarrier that was initially allocated to carry an original stream to a user with lower radio conditions. And this, without affecting the original user's rate nor the total amount of power assigned to the shared subcarrier. In the literature, most of the works that consider the use of HM focus solely on the physical layer performance, notably in terms of the bit error rate. And this for a static user scenario,i.e., with a fixed number of users in the system, each with an infinite service duration. This configuration however does not reflect the real system behavior where the number of users is dynamic, i.e., the users come to the system at random time epochs and leave it after a finite duration, corresponding to the completion of their services. The study of the system at the flow-level, as opposed to the packet level, for a dynamic user configuration, enables us to investigate the realistic relationship between capacity and demand and to quantify several system-level performance metrics, such as mean transfer times and blocking rates, which are meaningful both to the user and the network operator/provider.
3

Multihoming in heterogeneous wireless networks / Le multihoming dans les réseaux sans fil hétérogènes

Dandachi, Ghina 21 July 2017 (has links)
Les réseaux mobiles de la cinquième génération (5G) sont conçus pour introduire de nouveaux services nécessitant des débits de données extrêmement hauts et une faible latence. 5G sera un changement de paradigme qui comprend des réseaux hétérogènes densifiés, des réseaux d'accès radio virtualisés, des fréquences porteuses à ondes millimétrées et des densités de périphériques très élevées. Cependant, contrairement aux générations précédentes, 5G sera un réseau holistique, intégrant n'importe quelle nouvelle technologie radio avec les technologies LTE et WiFi existant. Dans ce contexte, on se concentre sur de nouvelles stratégies d'allocation de ressources capables de bénéficier du multihoming dans le cas d'accès double au réseau. On modélise ces algorithmes au niveau du flux et analyse leurs performances en termes de débit, de stabilité du système et d'équité entre différentes catégories d'utilisateurs. On se concentre tout d'abord sur le multihoming dans les réseaux hétérogènes LTE/WiFi. On considère les allocations centrées sur le réseau où un planificateur central effectue des allocations d'équité proportionnelle (PF) locale et globale pour différentes classes d'utilisateurs, utilisateurs individuels (single-homed) et multi-domiciliés (multihomed). Par rapport à un modèle de référence sans multihoming, on montre que les deux stratégies améliorent la performance et la stabilité du système, au détriment d'une plus grande complexité pour la stratégie PF globale. On étudie également les stratégies d'allocation centrées sur l'utilisateur, dans lesquelles les utilisateurs multihomed décident la partition de la demande d'un fichier en utilisant soit la maximisation du débit crête, soit la stratégie assistée par réseau. On montre que cette dernière stratégie maximise le débit moyen dans l'ensemble du réseau. On montre également que les stratégies centrées sur le réseau permettent d'obtenir des débits de données plus élevés que ceux centrés sur l'utilisateur. Ensuite, on se concentre sur les réseaux d'accès radio virtuels (V-RAN) et en particulier sur l'allocation de multi-ressources. On étudie la faisabilité de la virtualisation sans diminuer ni la performance des utilisateurs, ni la stabilité du système. On considère un réseau hétérogène 5G composé de cellules LTE et mm-wave afin d'étudier comment les réseaux hauts fréquence peuvent augmenter la capacité du système. On montre que la virtualisation du réseau est réalisable sans perte de performance lors de l'utilisation de la stratégie « dominant resource fairness » (DRF). On propose une stratégie d'allocation en deux phases (TPA) qui montre un indice d'équité plus élevé que DRF et une stabilité du système plus élevée que PF. On montre également des gains importants apportés par l'adoption des fréquences mm-wave au lieu de WiFi. Finalement, on considère l'efficacité énergétique et compare les stratégies DRF et TPA avec une stratégie éconergétique basée sur l'algorithme de Dinklebach. Les résultats montrent que la stratégie éconergétique dépasse légèrement DRF et TPA à charge faible ou moyenne en termes de débit moyen plus élevé avec une consommation d'énergie comparable, alors qu'elle les surpasse à une charge élevée en termes de consommation d'énergie moins élevée. Dans ce cas de charge élevée, DRF surpasse TPA et la stratégie éconergétique en termes de débit moyen. En ce qui concerne l'indice d'équité de Jain, TPA réalise l'indice d'équité le plus élevé parmi d'autres stratégies / Fifth generation mobile networks (5G) are being designed to introduce new services that require extreme broadband data rates and utlra-reliable latency. 5G will be a paradigm shift that includes heterogeneous networks with densification, virtualized radio access networks, mm-wave carrier frequencies, and very high device densities. However, unlike the previous generations, it will be a holistic network, tying any new 5G air interface and spectrum with the currently existing LTE and WiFi. In this context, we focus on new resource allocation strategies that are able to take advantage of multihoming in dual access settings. We model such algorithms at the flow level and analyze their performance in terms of flow throughput, system stability and fairness between different classes of users. We first focus on multihoming in LTE/WiFi heterogeneous networks. We consider network centric allocations where a central scheduler performs local and global proportional fairness (PF) allocations for different classes of users, single-homed and multihomed users. By comparison with a reference model without multihoming, we show that both strategies improve system performance and stability, at the expense of more complexity for the global PF. We also investigate user centric allocation strategies where multihomed users decide the split of a file using either peak rate maximization or network assisted strategy. We show that the latter strategy maximizes the average throughput in the whole network. We also show that network centric strategies achieve higher data rates than the user centric ones. Then, we focus on Virtual Radio Access Networks (V-RAN) and particularly on multi-resource allocation therein. We investigate the feasibility of virtualization without decreasing neither users performance, nor system's stability. We consider a 5G heterogeneous network composed of LTE and mm-wave cells in order to study how high frequency networks can increase system's capacity. We show that network virtualization is feasible without performance loss when using the dominant resource fairness strategy (DRF). We propose a two-phase allocation (TPA) strategy which achieves a higher fairness index than DRF and a higher system stability than PF. We also show significant gains brought by mm-wave instead of WiFi. Eventually, we consider energy efficiency and compare DRF and TPA strategies with a Dinklebach based energy efficient strategy. Our results show that the energy efficient strategy slightly outperforms DRF and TPA at low to medium load in terms of higher average throughput with comparable power consumption, while it outperforms them at high load in terms of power consumption. In this case of high load, DRF outperforms TPA and the energy efficient strategy in terms of average throughput. As for Jain's fairness index, TPA achieves the highest one
4

Conception et performance de schémas de coordination dans les réseaux cellulaires / Design and performance of coordination schemes in cellular networks

Abbas, Nivine 09 November 2016 (has links)
L'interférence entre stations de base est considérée comme le principal facteur limitant les performances des réseaux cellulaires. Nous nous intéressons aux différents schémas de coordination multi-point (CoMP) proposés dans la norme LTE-A pour y faire face, en tenant compte de l'aspect dynamique du trafic et de la mobilité des utilisateurs. Les résultats sont obtenus par l'analyse mathématique de modèles markoviens et par des simulations du système. Nous montrons l'importance de l'algorithme d'ordonnancement sur les performances en présence d'utilisateurs mobiles, pour des services de téléchargement de fichier et de streaming vidéo. Nous proposons un nouvel algorithme d'ordonnancement basé sur la dé-priorisation des utilisateurs mobiles se trouvant en bord de cellule, afin d'améliorer l'efficacité globale du système. Nous montrons ensuite qu'il est intéressant d'activer la technique dite Joint Processing uniquement dans un réseau à forte interférence, son activation dans un réseau à faible interférence pouvant conduire à une dégradation des performances. Nous proposons un nouveau mécanisme de coordination où une cellule ne coopère que lorsque sa coopération apporte un gain moyen de débit suffisant pour compenser les pertes de ressources engendrées. Nous considérons enfin la technique de formation de faisceaux coordonnée. Nous montrons notamment que la coordination n'est pas nécessaire lorsque l'on dispose d'un grand nombre d'antennes par station de base, un simple mécanisme d'ordonnancement opportuniste permettant d'obtenir des performances optimales. Pour un nombre limité d’antennes parstation de base, la coordination est nécessaire afin d’éviter l’interférence entre les faisceaux activés, et permet des gains de performance substantiels. / Interference is still the main limiting factor in cellular networks. We focus on the different coordinated multi-point schemes (CoMP) proposed in the LTE-A standard to cope with interference, taking into account the dynamic aspect of traffic and users’ mobility. The results are obtained by the analysis of Markov models and system-level simulations. We show the important impact of the scheduling strategy on the network performance in the presence of mobile users considering elastic traffic and video streaming. We propose a new scheduler that deprioritizes mobile users at the cell edge, in order to improve the overall system efficiency. We show that it is interesting to activate Joint Processing technique only in a high-interference network, its activation in a low-interference network may lead to performance degradation. We propose a new coordination mechanism, where a cell cooperates only when its cooperation brings a sufficient mean throughput gain, which compensates the extra resource consumption. Finally, we show that the coordination of beams is not necessary when a large number of antennas is deployed at each base station; a simple opportunistic scheduling strategy provides optimal performance. For a limited number of antennas per base station,coordination is necessary to avoid interference between the activated beams, allowing substantial performance gains.

Page generated in 0.0718 seconds