• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-phase flow in a large diameter vertical riser

Ali, Shazia Farman 02 1900 (has links)
The rapid depletion of hydrocarbon fields around the world has led the industry to search for these resources in ever increasing water depths. In this context, the large diameter (D > 100mm) vertical riser has become a subject of great interest. In this research work, a major investigation was undertaken to determine the two phase flow hydrodynamics in a 254mm vertical riser. Two types of experiments were performed for range of air-water superficial velocities. The first experimental campaign addresses the issue of the two gas injector’s performances (conventional vs. novel design gas injector) in the large diameter vertical riser. The experimental results show that the novel design gas injector should be the preferential choice. The second set of the experimental work investigates the two phase flow hydrodynamics in the vertical riser in detail. The two phase flow patterns and their transitions were identified by combination of visual observations and statistical features. Based on the results, the experimental flow regime map was developed and compared with the existing vertical upflow regime maps/models. None of the flow regime transition models adequately predicted the flow regimes transitions in large diameter vertical risers as a whole. In this regard, the Taitel et al. (1980) bubble to slug flow transition model has been modified for large diameter vertical upflow conditions, based on the physical mechanism observed. The general trends of modified criteria agreed well with the current and other large diameter experimental results. The effect of upstream conditions on the vertical riser flow behaviour was also investigated in detail by two different inlet configurations (i) near riser base injection and (ii) upstream flowline injection. It was found that no significant differences exist in flow behaviour at low air-water superficial velocities for both the inlet configuration, at high air-water superficial velocities, the intermittent flow behavior in flowline influences the riser flow pattern characteristics and thereby controls the riser dynamics. It is found that liquid slugs from the flowline naturally dissipate to some extent in the riser as a consequence of compression of succeeding bubble that rapidly expands and break through the liquid slug preceding it when it enters the riser. The experimental work corroborates the general consensus that slug flow does not exist in large diameter vertical upflow condition. Experimental data has been further compared to increase the confidence on the existing two phase flow knowledge on large diameter vertical riser: (a) by comparing with other experimental studies on large diameter vertical upflow in which generally, a good agreement was found, (b) by assessing the predictive capability of void fraction correlations/pressure gradient methods. The important implication of this assessment is that the mechanistic approach based on specific flow regime in determining the void fraction and pressure gradient is more successful than conventional empirical based approaches. The assessment also proposes a proposed set a of flow regime specific correlations that recommends void fraction correlations based on their performances in the individual flow regimes. Finally, a numerical model to study the hydrodynamic behaviour in the large diameter horizontal flowline-vertical riser system is developed using multiphase flow simulator OLGA. The simulated results show satisfactory agreement for the stable flows while discrepancies were noted for highly intermittent flows. The real time boundary application was partially successful in qualitatively reproducing the trends. The discrepancies between the predicted results and experimental data are likely to be related to the incorrect closure relations used based on incorrect flow regimes predictions. The existence of the multiple roots in the OLGA code is also reported for the first time.
2

Two-phase flow in a large diameter vertical riser

Ali, Shazia Farman January 2009 (has links)
The rapid depletion of hydrocarbon fields around the world has led the industry to search for these resources in ever increasing water depths. In this context, the large diameter (D > 100mm) vertical riser has become a subject of great interest. In this research work, a major investigation was undertaken to determine the two phase flow hydrodynamics in a 254mm vertical riser. Two types of experiments were performed for range of air-water superficial velocities. The first experimental campaign addresses the issue of the two gas injector’s performances (conventional vs. novel design gas injector) in the large diameter vertical riser. The experimental results show that the novel design gas injector should be the preferential choice. The second set of the experimental work investigates the two phase flow hydrodynamics in the vertical riser in detail. The two phase flow patterns and their transitions were identified by combination of visual observations and statistical features. Based on the results, the experimental flow regime map was developed and compared with the existing vertical upflow regime maps/models. None of the flow regime transition models adequately predicted the flow regimes transitions in large diameter vertical risers as a whole. In this regard, the Taitel et al. (1980) bubble to slug flow transition model has been modified for large diameter vertical upflow conditions, based on the physical mechanism observed. The general trends of modified criteria agreed well with the current and other large diameter experimental results. The effect of upstream conditions on the vertical riser flow behaviour was also investigated in detail by two different inlet configurations (i) near riser base injection and (ii) upstream flowline injection. It was found that no significant differences exist in flow behaviour at low air-water superficial velocities for both the inlet configuration, at high air-water superficial velocities, the intermittent flow behavior in flowline influences the riser flow pattern characteristics and thereby controls the riser dynamics. It is found that liquid slugs from the flowline naturally dissipate to some extent in the riser as a consequence of compression of succeeding bubble that rapidly expands and break through the liquid slug preceding it when it enters the riser. The experimental work corroborates the general consensus that slug flow does not exist in large diameter vertical upflow condition. Experimental data has been further compared to increase the confidence on the existing two phase flow knowledge on large diameter vertical riser: (a) by comparing with other experimental studies on large diameter vertical upflow in which generally, a good agreement was found, (b) by assessing the predictive capability of void fraction correlations/pressure gradient methods. The important implication of this assessment is that the mechanistic approach based on specific flow regime in determining the void fraction and pressure gradient is more successful than conventional empirical based approaches. The assessment also proposes a proposed set a of flow regime specific correlations that recommends void fraction correlations based on their performances in the individual flow regimes. Finally, a numerical model to study the hydrodynamic behaviour in the large diameter horizontal flowline-vertical riser system is developed using multiphase flow simulator OLGA. The simulated results show satisfactory agreement for the stable flows while discrepancies were noted for highly intermittent flows. The real time boundary application was partially successful in qualitatively reproducing the trends. The discrepancies between the predicted results and experimental data are likely to be related to the incorrect closure relations used based on incorrect flow regimes predictions. The existence of the multiple roots in the OLGA code is also reported for the first time.

Page generated in 0.0534 seconds