Spelling suggestions: "subject:"fluid/3structure 1interaction"" "subject:"fluid/3structure 3dinteraction""
301 |
Computational fluid-structure interaction with the moving immersed boundary method / Résolution de l’interaction fluide-structure par la méthode des frontières immergées mobilesCai, Shang-Gui 30 May 2016 (has links)
Dans cette thèse, une nouvelle méthode de frontières immergées a été développée pour la simulation d'interaction fluide-structure, appelée la méthode de frontières immergées mobiles (en langage anglo-saxon: MIBM). L'objectif principal de cette nouvelle méthode est de déplacer arbitrairement les solides à géométrie complexe dans un fluide visqueux incompressible, sans remailler le domaine fluide. Cette nouvelle méthode a l'avantage d'imposer la condition de non-glissement à l'interface d'une manière exacte via une force sans introduire des constantes artificielles modélisant la structure rigide. Cet avantage conduit également à la satisfaction de la condition CFL avec un pas de temps plus grand. Pour un calcul précis de la force induite par les frontières mobiles, un système linéaire a été introduit et résolu par la méthode de gradient conjugué. La méthode proposée peut être intégrée facilement dans des solveurs résolvant les équations de Navier-Stokes. Dans ce travail la MIBM a été mise en œuvre en couplage avec un solveur fluide utilisant une méthode de projection adaptée pour obtenir des solutions d'ordre deux en temps et en espace. Le champ de pression a été obtenu par l'équation de Poisson qui a été résolue à l'aide de la méthode du gradient conjugué préconditionné par la méthode multi-grille. La combinaison de ces deux méthodes a permis un gain de temps considérable par rapport aux méthodes classiques de la résolution des systèmes linéaires. De plus le code de calcul développé a été parallélisé sur l'unité graphique GPU équipée de la bibliothèque CUDA pour aboutir à des hautes performances de calcul. Enfin, comme application de nos travaux sur la MIBM, nous avons étudié le couplage "fort" d'interaction fluide-structure (IFS). Pour ce type de couplage, un schéma implicite partitionné a été adopté dans lequel les conditions à l'interface sont satisfaites via un schéma de type "point fixe". Pour réduire le temps de calcul inhérent à cette application, un nouveau schéma de couplage a été proposé pour éviter la résolution de l'équation de Poisson durant les itérations du "point fixe". Cette nouvelle façon de résoudre les problèmes IFS a montré des performances prometteuses pour des systèmes en IFS complexe. / In this thesis a novel non-body conforming mesh formulation is developed, called the moving immersed boundary method (MIBM), for the numerical simulation of fluid-structure interaction (FSI). The primary goal is to enable solids of complex shape to move arbitrarily in an incompressible viscous fluid, without fitting the solid boundary motion with dynamic meshes. This novel method enforces the no-slip boundary condition exactly at the fluid-solid interface with a boundary force, without introducing any artificial constants to the rigid body formulation. As a result, large time step can be used in current method. To determine the boundary force more efficiently in case of moving boundaries, an additional moving force equation is derived and the resulting system is solved by the conjugate gradient method. The proposed method is highly portable and can be integrated into any fluid solver as a plug-in. In the present thesis, the MIBM is implemented in the fluid solver based on the projection method. In order to obtain results of high accuracy, the rotational incremental pressure correction projection method is adopted, which is free of numerical boundary layer and is second order accurate. To accelerate the calculation of the pressure Poisson equation, the multi-grid method is employed as a preconditioner together with the conjugate gradient method as a solver. The code is further parallelized on the graphics processing unit (GPU) with the CUDA library to enjoy high performance computing. At last, the proposed MIBM is applied to the study of two-way FSI problem. For stability and modularity reasons, a partitioned implicit scheme is selected for this strongly coupled problem. The interface matching of fluid and solid variables is realized through a fixed point iteration. To reduce the computational cost, a novel efficient coupling scheme is proposed by removing the time-consuming pressure Poisson equation from this fixed point interaction. The proposed method has shown a promising performance in modeling complex FSI system.
|
302 |
Novel Finite Element Formulations For Dynamics Of Acoustic FluidsKishor, Dubasi Krishna 12 1900 (has links) (PDF)
Fluid-structure interaction (FSI) as the name suggests, is the study of dynamic interaction of both fluid and structure motions. Fluid-structure interaction exists in almost all engineering and science fields. Moreover, the random loading caused by fluid motions in uncertain environment conditions present new challenges to the designers. The objective of the present research work is to develop efficient and robust finite element models to solve fluid structure interaction problems effectively. A key advantage of the displacement based FE M is the flexibility and easiness in modifying the existing efficient numerical solvers, and can also be extended easily to a number of problems.
The research work carried out in this thesis can be divided into three parts. In the first part, development of displacement based Lagrangian FE models for acoustic fluids is presented. Here, the displacement fields of the 2-D and 3-DFEs are derived based on the consistently assumed constrained strain fields satisfying irrotationality and incompressibility constraints simultaneously. These elements’ behaviour, in terms of number of zero energy modes, non-zero spurious modes, and the integration order is studied. The inf-sup test is carried out on all the elements to examine the performance of each formulated element. Next, a new class of FEs based on Legendre polynomials is presented. The node point locations in this case are obtained by calculating the zero’s of equation(1- ξ2)L’n(ξ) =0,where,Ln is the Legendre polynomial of order n in one dimension.
In the second part, the development of a spectral layer element for studying wave propagation in acoustic fluids is presented. Laplace transform based spectral finite element formulation is developed for studying acoustic wave propagation. The partial differential equations(PDE)are converted to ordinary differential equations(ODE) by taking Laplace transform. The Laplace damping parameter is introduced for easy handling of the numerical Laplace transform(NLT).This Laplace damping parameter removes the “wraparound”problem which is present in shortwave guides due to periodicity of the Fourier transform. Later, a technique is developed through which SFEM stiffness matrix can be added to the FEM dynamic stiffness matrix in the frequency domain.
Finally, Uncertainty analysis is carried out to understand the effect of randomness in the design parameters on the system response variability. Here, standard uncertainty analysis procedure called Monte Carlo simulation (MCS) is considered first and later Polynomial chaos expansion(PCE). In this analysis, the gravitational forces, bulk modulus of the fluid, and Young’s modulus of the structure are considered as random input variables in the study. The randomness in the system output is measured in terms of coefficient of variation for each random variable considered.
|
303 |
Coupling schemes and unfitted mesh methods for fluid-structure interaction / Schémas de couplage et méthodes de maillage non compatibles pour l'interaction fluide-structureLandajuela Larma, Mikel 29 March 2016 (has links)
Cette thèse est dédiée à la simulation numérique des systèmes mécaniques impliquant l'interaction entre une structure mince déformable et un fluide incompressible interne ou qui l'entoure.Dans la première partie, nous introduisons deux nouvelles classes de schémas de couplage explicites en utilisant des maillages compatibles. Les méthodes proposées combinent une certaine consistance Robin dans le système avec (i) un schéma à pas fractionnaire pour le fluide ou (ii) une discrétisation temporelle d'ordre deux pour le fluide et le solide. Les propriétés de stabilité des méthodes sont analysées dans un cadre linéaire représentatif. Cette partie inclut aussi une étude numérique exhaustive dans laquelle plusieurs schémas de couplage (dont certains proposés ici) sont comparés et validés avec des résultats expérimentaux. Dans la seconde partie, nous considérons des maillages non compatibles. La discrétisation spatiale est basée, dans ce cas là, sur des variantes de la méthode de Nitsche avec éléments coupés. Nous présentons deux nouveaux types de schémas de découplage qui exploitent la susmentionée condition de Robin en utilisant des maillages incompatibles. Le caractère semi-implicite ou explicite du couplage en temps dépend de l'ordre dans lequel les discrétisations spatiales et temporelles sont effectuées. Dans le cas d'un couplage avec des structures immergées, la vitesse et la pression discrètes permettent des discontinuités faibles et fortes à travers l'interface, respectivement. Des estimations de stabilité et d'erreur sont fournies dans un cadre linéaire. Une série de tests numériques illustre la performance des différentes méthodes proposées. / This thesis is devoted to the numerical approximation of mechanical systems involving the interaction of a deformable thin-walled structure with an internal or surrounding incompressible fluid flow. In the first part, we introduce two new classes of explicit coupling schemes using fitted meshes. The methods proposed combine a certain Robin-consistency in the system with (i) a projection-based time-marching in the fluid or (ii) second-order time-stepping in both the fluid and the solid. The stability properties of the methods are analyzed within representative linear settings. This part includes also a comprehensive numerical study in which state-of-the-art coupling schemes (including some of the methods proposed herein) are compared and validated against the results of an experimental benchmark. In the second part, we consider unfitted mesh formulations. The spatial discretization in this case is based on variants of Nitsche’s method with cut elements. We present two new classes of splitting schemes which exploit the aforementioned interface Robin-consistency in the unfitted framework. The semi-implicit or explicit nature of the splitting in time is dictated by the order in which the spatial and time discretizations are performed. In the case of the coupling with immersed structures, weak and strong discontinuities across the interface are allowed for the velocity and pressure, respectively. Stability and error estimates are provided within a linear setting. A series of numerical tests illustrates the performance of the different methods proposed.
|
304 |
Hydroelastic Response of Hydrofoil Under Cavitation Conditions / Hydroelastic Response of Hydrofoil Under Cavitation ConditionsČupr, Pavel January 2021 (has links)
Tato disertační práce se zabývá experimentálním a výpočtovým výzkumem přídavných účinků od proudu kapaliny na obtékaný hydraulický profil. Dynamická odezva profilu byla analyzována pro dva typy buzení: buzení odtržením mezní vrstvy a Kármánových vírů a dále buzení pomocí externího budiče připojeného k lopatce. Experimentální měření dynamické odezvy profilu na oba typy buzení bylo provedeno pro lopatku umístěnou v kavitujícím a nekavitujícím proudění. Získané výsledky byly použity pro verifikaci přídavných účinků stanovených s využitím numerického modelování.
|
305 |
Optimalizace jádra formy na vstřikování plastů / Optimization of core molds for injection moldingStavárek, Václav January 2019 (has links)
Diplomová práce vznikla ve spolupráci s průmyslovým partnerem, který vyrábí elektrické komponenty pro automobilový průmysl. Tato firma se potýká s problémy často se porušujících jader v některých jejich formách na vstřikování plastů, vyrábějících převážně housingy pro konektory. Firma disponuje licencemi na komerční software pro simulaci injekčního vstřikování Moldflow a Moldex3D a také pro simulaci metodou konečných prvků Ansys. Nejprve jsou shrnuty teoretické poznatky ohledně injekčního vstřikování a jeho simulace, řešení problémů interakce těles s tekutinou a únavy materiálu. Poté je popsán proces stanovení únavové životnosti jádra formy s využitím výše zmíněného softwaru. Proces je vysvětlen na příkladu konkrétní formy ve výrobě této firmy. Je zvolen takový přístup vyhodnocení únavy, který nejvíce odpovídá současné životnosti jader, a ten je pak použit pro analýzu vlivu změny geometrie jádra a parametrů vstřikování. Změny ostatních parametrů, které simulace neumožňuje zahrnout, jsou rovněž navrhnuty a pokud možno odůvodněny jinými způsoby. Jedno z doporučení je přidání zaoblení na obě jádra, což by mohlo prodloužit životnost toho problematičtějšího z nich z 30 dnů na více než 320 dnů. Toto by mohlo znamenat úspory až 10 600 EUR ročně. Další doporučení je změnit způsob obrábění jader a také přidat jejich tepelné zpracování.
|
306 |
Analýza šíření tlakové vlny v aortě / Analysis of pulse wave propagation in aortaTichoň, Dušan January 2020 (has links)
The aim of this diploma thesis is to assess the applicability of pulse wave propagation monitoring in the cardiovascular system in the field of prediction and early diagnosis of abdominal aortic aneurysm (AAA). The very first part is focused on description of heart and blood vessels with its pathological changes in presence of aneurysm. For this reason, current methods of monitoring and surgical treating of AAA were mentioned. Due to their difficult clinical use widely in the population, new methods based on pulse wave monitoring were presented. Using an analytical approach we estimated the difference in the arrival of the pulse wave at measurable locations between healthy and pathological aorta in the order of miliseconds. By experimental monitoring using photoplethysmographic sensors, we observed significant changes of pulse wave velocity with respect to the mechanical properties of the artery wall (mainly associated with age), which we tried to implement by hyperelastic material models used in computational simulations of pulse wave proagation on simplified geometries by fluid structure interaction method. These analyzes should verify applicability of FSI simulations in further development of diagnostic methods of AAA.
|
307 |
Použití fluidně-strukturní interakce u kmitajících lidských hlasivek / Application of Fluid-structure Interaction on Oscillating Human Vocal FoldsMeisner, Patrik January 2021 (has links)
The presented thesis is involved in the biomechanics of phonation. The aim of the thesis is to set a fluid-structure interaction between the vocal folds and air flow when the pressure from lungs reaches the physiological values. In the expected outcome the self-oscillating vocal folds should be observable with characteristics shape-shift from convergent to divergent. In theory part of the thesis is described Anatomy of the vocal tract, physiology of the human phonation, research of computational simulations, experiments and visualisation methods are described in the theory part of the thesis. In the second part, setup of computational simulation with the finite element method is presented. Besides of the fluid-structure interaction the acoustical model is set. Achieved results are presented and compared to the results in literature. Displacements are evaluated from the structural model and pressures, velocities and flow velocities are evaluated from fluid model, so as acoustics results.
|
308 |
Spektrální vlastnosti bazilární membrány v kochley vnitřního ucha / Spectral properties of basilar membrane in the cochlea of the inner earJozíf, Lukáš January 2011 (has links)
This thesis aims to verify the function of the cochlea as a spectrum analyzer based on computational modeling of macro-mechanics of the cochlea using FEM. I aim to identify the spectrum of the basilar membrane, which is dependent on the variability of geometry, material characteristics and the presence of liquid environments. Interactions between liquid and solid phases is described by fluid-structure interaction in the system ANSYS. The model is linear and does not pursue an active policy of metabolic processes. Further the work focuses on the decomposition of the sound and check of two best known hypotheses about the transmission frequency of the sound to the brain.
|
309 |
Modální analýza lopatek oběžného kola vírové turbíny / Modal Analysis of the Swirl Turbine Rotor BladesPekar, Marek January 2014 (has links)
The aim of this diploma thesis is to determine and compare modal properties of four swirl turbine wheels, each with a different geometry. Natural frequencies and mode shapes were obtained based on computer modelling using Ansys software and they were compared with experimental modal analysis' results. The computer modelling and the experimental modal analysis were carried out for different boundary conditions and in different environments. The beginning of the thesis is dedicated to a brief overview of literature with similar issues. Then a brief introduction of a dynamics theory is mentioned in which equations of motion for a damped and an undamped single degree of freedom system are derived. The creation of a geometry model which is obtained by a reverse engineering is shown in the second part of the thesis. The geometry model was subsequently used for the computer based modelling of the modal parameters. In the third part an experimental equipment, setting, measurement and processing of data are described. The conclusion of the thesis is dedicated to the comparison of the results obtained by the experimental modal analysis and the computing modelling is presented. Moreover, influence of boundary conditions and influence of the environment on the natural frequencies are evaluated.
|
310 |
Modeling with consideration of the fluid-structure interaction of the behavior under load of a kite for auxiliary traction of ships / Modélisation avec prise en compte de l’interaction fluide-structure du comportement sous charge d’un cerf-volant pour la traction auxiliaire des naviresDuport, Chloé 21 December 2018 (has links)
Cette thèse fait partie du projet beyond the sea® qui a pour but de développer la traction par cerf-volant à boudins gonflés (kite) comme système de propulsion auxiliaire des navires. Comme le kite est une structure souple, il est nécessaire de mettre en place une boucle d’interaction fluide-structure pour calculer la géométrie du kite en vol et ses performances aérodynamiques. Un modèle de Ligne Portante 3D Non-Linéaire a été développé pour pouvoir gérer ces ailes non planes, avec des angles de dièdre et de flèche qui varient le long de l’envergure, et également pour pouvoir prendre en compte la non-linéarité du coefficient de portance de la section aérodynamique. Le modèle a été vérifié par des simulations RANSE sur différentes géométries et donne des résultats satisfaisants pour des angles d’incidence et de dérapage variant jusqu’à 15°, avec des différences relatives de quelques pour cent pour l’estimation de la portance globale de l’aile. Les résultats locaux sont aussi correctement estimés, le modèle est capable d’estimer la position du minimum et du maximum de chargement local, selon l’envergure de l’aile, et cela même pour une aile en dérapage. En parallèle, un modèle structure a été développé. L’idée principale du modèle Kite as a Beam est de réduire le kite à un ensemble d’éléments poutre, chacun équivalent à une partie du kite composé d’une section du boudin d’attaque, de deux lattes gonflées et de la canopée correspondante. Le modèle Kite as a Beam a été comparé à un modèle éléments finis complet du kite sur des cas de déplacements élémentaires. Les résultats montrent certaines différences de comportement entre les deux modèles, avec notamment une surestimation de la raideur en torsion pour le modèle Kite as a Beam. Finalement, le modèle Kite as a Beam a été couplé avec la Ligne Portante 3D Non-Linéaire, puis comparé au modèle éléments finis, couplé également avec la Ligne Portante. La réduction du temps de calcul est réellement importante mais les résultats de la comparaison montrent la nécessité de calibrer le modèle Kite as a Beam pour pouvoir retrouver correctement les résultats du modèle éléments finis. / The present thesis is part of the beyond the sea® project which aims to develop tethered kite systems as auxiliary devices for ship propulsion. As a kite is a flexible structure, fluid-structure interaction has to be taken into account to calculate the flying shape and aerodynamic performances of the wing. A 3D Non-Linear Lifting Line model has been developed to deal with non-straight kite wings, with dihedral and sweep angles variable along the span and take into account the non-linearity of the section lift coefficient. The model has been checked with 3D RANSE simulations over various geometries and produces satisfactory results for range of incidence and sideslip up to 15°, with typical relative differences of few percent for the overall lift. The local results are also correctly estimated, the model is able to predict the position of the minimum and maximum loading along the span, even for a wing in sideslip. Simultaneously, a structure model has been developed. The core idea of the Kite as a Beam model is to approximate a Leading Edge Inflatable kite by an assembly of beam elements, equivalent each to a part of the kite composed of a portion of the inflatable leading edge, two inflatable battens and the corresponding canopy. The Kite as a Beam model has been compared to a complete kite Finite Element model over elementary comparison cases. The results show the behaviour differences of the two models, for example the torsion stiffness is globally overestimated by the Kite as a Beam model. Eventually, the Kite as a Beam model coupled with the 3D Non-Linear Lifting Line model is compared to the complete finite element model coupled with the 3D Non-Linear Lifting Line model. The gain in computation time is really significant but the results show the necessity of model calibration if the Kite as a Beam model should be used to predict the results of the complete finite element model.
|
Page generated in 0.1145 seconds