• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN AND TESTING OF LOW DIVERGENCE ELLIPTICAL-JET NOZZLES FOR USE IN CREEP-FEED GRINDING

Rouly, Ovey Etienne 02 December 2013 (has links)
A novel method was developed to design and fabricate nozzles capable of producing low-divergence fluid jets. Nozzle apertures were elliptical, and jets exhibited elliptical cross-sections with divergence varying predictably between 0 and 13°. Nozzle aperture aspect ratios varied from 1.00 to 2.45, area was equivalent to that of a 6mm diameter circle. An elliptical jet was developed with 0.4° and 0.9° divergence in the major and minor axes, respectively. Performance of this elliptical nozzle was compared to that of a circular nozzle via profiled creep-feed grinding trials. Results indicate the circular nozzle performs similarly to the horizontal ellipse; the vertical ellipse frequently caused wheel breakdown. Optimized cutting parameters: wheel speed 23m/s, cut depth 1.78mm, feed rate 200mm/min, jet pressure 3.21MPa or greater. Experiments were performed on a Blohm Planomat 408 CNC grinding machine using CimTech 310 cutting fluid. Nozzle experiments used a Brix concentration of 6.1%, grinding experiments used 3.1%.
2

The shape transformation to a circular form of a fluid jet exiting a non-circular orifice of a nozzle

Danielsson, Rebecka, Briland, Ida January 2016 (has links)
Nozzles are used in a wide range of applications. Nevertheless, the geometric of non-circular orifices have not been widely studied. This project has examined fluid jets exiting through a non-circular orifice, in the gravitational direction. Furthermore, its transformation to a circular cross-section due to a surface tension forces. How the length to a circular cross-section changes with the nozzles geometry and bath depth of the tundish was the main focus of this studied. A water model and high-speed camera was used to capture the profile of the fluid jet. Four different nozzles were attached one by one to five different tundishes with different bath depths. The result showed that with deeper bath depths the circular cross-section occurred further down from the nozzles orifice. The length to the circular cross-section also depended on the orifice area, a larger area gave a longer distance than a smaller area. It was shown that the length to circular cross-section followed a quadratic function, when the measured values were analyzed based on the Weber number. The profile of the fluid jet was dependent on the material of the nozzle, the geometries of the orifice, the bath depth and the surface tension.
3

CFD analysis of steady state flow reaction forces in a rim spool valve

Okungbowa, Norense Stanley 20 February 2006
Hydraulic spool valves are found in most hydraulic circuits in which flow is to be modulated. Therefore their dynamic performance is critical to the overall performance of the circuit. Fundamental to this performance is the presence of flow reaction forces which act on the spool. These forces can result in the necessity of using two stage devices to drive the spool and in some cases have been directly linked to valve and circuit instabilities. As such, a great deal of research and design has concentrated on ways to reduce or compensate for flow forces. In one particular series of studies conducted on flow divider valves, it was established that a rim machined into the land of the spool reduced the flow dividing error by approximately 70-80%, and it was deduced that the main contribution to this error was flow forces. Direct verification of the claim regarding flow force reduction was not achieved and hence was the motivation for this particular study. <p> This thesis will consider the reaction (flow) force associated with a conventional spool land and one with a rim machined into it, and a modified form of the rimmed land referred to as a sharp edge tapered rim spool land. The rim and the sharp edge tapered rim were specially designed geometrical changes to the lands of the standard spool in order to reduce the large steady state flow forces (SSFF) inherent in the standard spool valve. In order to analyze the flow field inside the interior passages of the valve, three configurations of the spool were considered for orifice openings of 0.375, 0.5, 0.75 and 1.05 mm. Computational Fluid Dynamics (CFD) analysis was used to describe the fluid mechanics associated with the steady state flow forces as it provided a detailed structure of the flow through the valve, and to identify the flow mechanism whereby flow forces are reduced by the machining of a rim and tapered rim on the land of the spool. For all openings of the spool, the sharp tapered rim valve provides the largest reduction in SSFF. It was also observed that for all cases studied, the inflow SSFFs were smaller than for the outflow conditions. <p>The prediction of the steady state flow force on the rim spool was investigated in a flow divider valve configuration, and the results from the CFD analysis indicated a reduction by approximately 70%.
4

CFD analysis of steady state flow reaction forces in a rim spool valve

Okungbowa, Norense Stanley 20 February 2006 (has links)
Hydraulic spool valves are found in most hydraulic circuits in which flow is to be modulated. Therefore their dynamic performance is critical to the overall performance of the circuit. Fundamental to this performance is the presence of flow reaction forces which act on the spool. These forces can result in the necessity of using two stage devices to drive the spool and in some cases have been directly linked to valve and circuit instabilities. As such, a great deal of research and design has concentrated on ways to reduce or compensate for flow forces. In one particular series of studies conducted on flow divider valves, it was established that a rim machined into the land of the spool reduced the flow dividing error by approximately 70-80%, and it was deduced that the main contribution to this error was flow forces. Direct verification of the claim regarding flow force reduction was not achieved and hence was the motivation for this particular study. <p> This thesis will consider the reaction (flow) force associated with a conventional spool land and one with a rim machined into it, and a modified form of the rimmed land referred to as a sharp edge tapered rim spool land. The rim and the sharp edge tapered rim were specially designed geometrical changes to the lands of the standard spool in order to reduce the large steady state flow forces (SSFF) inherent in the standard spool valve. In order to analyze the flow field inside the interior passages of the valve, three configurations of the spool were considered for orifice openings of 0.375, 0.5, 0.75 and 1.05 mm. Computational Fluid Dynamics (CFD) analysis was used to describe the fluid mechanics associated with the steady state flow forces as it provided a detailed structure of the flow through the valve, and to identify the flow mechanism whereby flow forces are reduced by the machining of a rim and tapered rim on the land of the spool. For all openings of the spool, the sharp tapered rim valve provides the largest reduction in SSFF. It was also observed that for all cases studied, the inflow SSFFs were smaller than for the outflow conditions. <p>The prediction of the steady state flow force on the rim spool was investigated in a flow divider valve configuration, and the results from the CFD analysis indicated a reduction by approximately 70%.
5

Numerical Simulations of Heat Transfer Processes in a Dehumidifying Wavy Fin and a Confined Liquid Jet Impingement on Various Surfaces

Elsheikh, Mutasim Mohamed Sarour 01 January 2011 (has links)
This thesis consists of two different research problems. In the first one, the heat transfer characteristic of wavy fin assembly with dehumidification is carried out. In general, fin tube heat exchangers are employed in a wide variety of engineering applications, such as cooling coils for air conditioning, air pre-heaters in power plants and for heat dissipation from engine coolants in automobile radiators. In these heat exchangers, a heat transfer fluid such as water, oil, or refrigerant, flows through a parallel tube bank, while a second heat transfer fluid, such as air, is directed across the tubes. Since the principal resistance is much greater on the air side than on the tube side, enhanced surfaces in the form of wavy fins are used in air-cooled heat exchangers to improve the overall heat transfer performance. In heating, ventilation, and air conditioning systems (HVAC), the air stream is cooled and dehumidified as it passes through the cooling coils, circulating the refrigerant. Heat and mass transfer take place when the coil surface temperature in most cooling coils is below the dew point temperature of the air being cooled. This thesis presents a simplified analysis of combined heat and mass transfer in wavy-finned cooling coils by considering condensing water film resistance for a fully wet fin in dehumidifier coil operation during air condition. The effects of variation of the cold fluid temperature (-5˚C - 5˚C), air side temperature (25˚C - 35˚C), and relative humidity (50% - 70%) on the dimensionless temperature distribution and the augmentation factor are investigated and compared with those under dry conditions. In addition, comparison of the wavy fin with straight radial or rectangular fin under the same conditions were investigated and the results show that the wavy fin has better heat dissipation because of the greater area. The results demonstrate that the overall fin efficiency is dependent on the relative humidity of the surrounding air and the total surface area of the fin. In addition, the findings of the present work are in good agreement with experimental data. The second problem investigated is the heat transfer analysis of confined liquid jet impingement on various surfaces. The objective of this computational study is to characterize the convective heat transfer of a confined liquid jet impinging on a curved surface of a solid body, while the body is being supplied with a uniform heat flux at its opposite flat surface. Both convex and concave configurations of the curved surface are investigated. The confinement plate has the same shape as the curved surface. Calculations were done for various solid materials, namely copper, aluminum, Constantan, and silicon; at two-dimensional jet. For this research, Reynolds numbers ranging from 750 to 2000 for various nozzle widths channel spacing, radii of curvature, and base thicknesses of the solid body, were used. Results are presented in terms of dimensionless solid-fluid interface temperature, heat transfer coefficient, and local and average Nusselt numbers. The increments of Reynolds numbers increase local Nusselt numbers over the entire solid-fluid interface. Decreasing the nozzle width, channel spacing, plate thickness or curved surface radius of curvature all enhanced the local Nusselt number. Results show that a convex surface is more effective compared to a flat or concave surface. Numerical simulation results are validated by comparing them with experimental data for flat and concave surfaces.

Page generated in 0.0317 seconds