• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions

Porritt, R. W., Yoshioka, S. 10 1900 (has links)
Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.
2

The Evaluation of Subsurface Fluid Migration using Noble Gas Tracers and Numerical Modeling

Eymold, William Karl January 2020 (has links)
No description available.
3

Structural control on fluid migration in inverted sedimentary basins

Duschl, Florian 19 November 2018 (has links)
No description available.
4

Fault Seal Analysis for CO2 Storage: Fault Zone Architecture, Fault Permeability, and Fluid Migration Pathways in Exposed Analogs in Southeastern Utah

Richey, David J. 01 May 2013 (has links)
Geologic storage of anthropogenic carbon dioxide (CO2) by injection into underground porous sandstone reservoirs has been proposed as a method for the reduction of anthropogenic greenhouse gas emissions. Upwards migration and leakage of injected fluids along natural fault and fracture networks is a key risk factor for potential injection locations. We examine exposed natural analogs to evaluate the impacts of faulting and fracturing on reservoir and top-seal pairs and to evaluate evidence for paleomigration of fluids along the fault zone. We examine the Iron Wash fault, a 25-km long normal fault which cuts Jurassic sedimentary rocks and has throws that range from 20-120 m, to examine how a fault may affect seal integrity. Field mapping, kinematic analysis, petrographic analysis, characterization of the fault zone facies and fault architecture, analysis of altered and mineralized rocks in and around the fault zone, and modeling of fault seal capacity was conducted to provide an understanding of the Iron Wash fault zone. Field data and observations were combined with well log and borehole data to produce three types of models for the Iron Wash fault: 1) geometric model of the fault in the subsurface, 2) predictive models of fault zone behavior and fault seal analysis, and 3) predictive geomechanical models of the response of the fault zone to an imposed stress field and increasing the effective stress on the fault. We conclude that the Iron Wash fault zone has low sealing capacity and will likely not behave as a seal for fluids against the fault zone due primarily to modest throw on the fault and high frequency of fractures associated with the fault zone. Analysis of fluid alteration and mineralization around the fault zone indicates that the fault zone was conduit for paleo-fluids. We conclude that the fault is not likely to develop a sealing membrane and therefore will most likely fail as a seal to fluids moving through the reservoirs modeled here. Modeling results indicate that a reduction in the effective normal stress on fault surfaces may induce failure of faults resulting in earthquakes or increased hydraulic conductivity of fractures.
5

Acoustic survey of sea floor features in Asköfjärden

Lundmark, Kim January 2017 (has links)
Marine geological surveys in Asköfjärden in the southern Stockholm Archipelago hasrevealed step like features in the sediments on the Baltic sea floor. The aim of this project is toanalyse the steps and possible formation processes from the survey data. The data used aretaken from the acoustic instruments multibeam echosunder and Chirp sonar sediment profiler.The multibeam reveal the seafloor topography and can detect water column features. TheChirp sonar produce sub-bottom profiles showing the sediments down to some tens of metersunderneath the sea floor. The multibeam data show multiple crescent shaped steps as well aselliptically shaped “pockmarks”. Water column data show what could be interpreted as seepsfrom the sea floor under these features. The sub bottom profile show deformation and fluidsignatures under the steps. Gas signatures and what could be other fluids are present. Theinterpretation concludes that the formation could be from either gas or groundwater seeps. Nodefinitive conclusions can be made from the data available for the present study, andapetrophysical or geochemical study of the study area cold provide further understanding ofthe formation of the steps.
6

A Study To Determine The Cement Slurry Behaviour To Prevent Fluid Migration

Karakaya, Guray 01 December 2010 (has links) (PDF)
Fluid migration behind the cased holes is an important problem for oil and gas industry both considering short terms and long terms after cementing operation. For many reasons like high formation pressures, high shrinkage rate of cement slurry while setting, lack of mechanical seal, channeling due to cement slurry setting profile, hydrocarbon migration may occur and lead expensive recompletion operations and sometimes abandonment. Solutions to this problem vary including high density-low fluid loss cement slurry or right angle cement setting profile. During this study, the effect of &ldquo / free water&rdquo / which is the basic quality property of API G class cement, on fluid migration potential has been tested for different samples and in combination with different physical conditions. For this study API G class cements have been used. In order to justify the quality of each cement sample standard API G class quality tests were conducted. Moreover, as a main instrument &ldquo / Static Gel Strength Analyzer&rdquo / is used to measure the static gel strength of cement slurry and how long it takes to complete transition time. Bolu cement, Nuh cement, and Mix G cement samples were tested according to their free fluid values which are %2.5, %5, %3.12 respectively, and it is found that the Bolu cement with lowest free fluid content has the lowest potential for fluid migration. As a conclusion, fluid migration through behind the cased hole is a major threat for the life of the well. Appropriate cement slurry system may easily defeat this threat and lead cost saving well plans. Key words: Fluid migration, fluid loss, transition time, channeling, right angle, API G class cement, free water, high formation pressure
7

Noble Gas and Hydrocarbon Geochemistry of Coalbed Methane Fields from the Illinois Basin

Moore, Myles Thomas January 2016 (has links)
No description available.
8

La Faille Nord Anatolienne dans sa portion immergée en mer de Marmara : évolution du réseau de failles et migration de fluides / The submerged section of the North Anatolian Fault within the Sea of Marmara : evolution of the fault network and fluid migration

Grall, Céline 28 March 2013 (has links)
Cette thèse porte sur la déformation et les migrations de fluides associées à la Faille Nord Anatolienne en Mer de Marmara (Turquie).Nous étudions tout d'abord l'évolution de la géométrie et du taux de glissement du système de faille, par deux approches indépendantes: - modélisation thermique de l'histoire d'un bassin, - définition d'un marqueur temporel de type Dépôt de Transport en Masse, daté par interprétation stratigraphique. Nous montrons que: -(1) le système de failles actuel, défini comme une faille principale accommodant la majorité de la déformation inter-plaque, n'a pas significativement évolué depuis 330.000 ± 100.000 ans dans la partie Ouest de la mer; -(2) le système de faille s'est progressivement réorganisé depuis 2.5-1.5 Ma.Dans un deuxième temps, nous étudions les processus d'initiation des Transports en Masse. Nous montrons que: -(1) même si les Transports en Masse sont contrôlés par des processus tectoniques (principalement les séismes et l'extension crustale), leur fréquence et leur taille sont conditionnées par les oscillations glacio-eustatiques; -(2) des Dépôts en Masse ont une périodicité corrélée aux transitions marins/lacustres. Cette cyclicité peut être expliquée par la diffusion d'eau saumâtre, dans les argiles marines entraînant leur gonflement et déstabilisant les sédiments. Dans une troisième partie, nous étudions la diversité des contextes des sites d'émissions de fluides en fonds de mer. Nous montrons que l'occurrence des sites d'émission de fluides est en partie liée au flux ascendant de gaz le long de couches perméables des bassins vers leurs bords, et le long des fractures du socle vers les bords des bassins et les anticlinaux. / This study addresses the issue on the deformation and the fluid migration, associated to the North Anatolian Fault within the Sea of Marmara (Turkey).First, we aim to constrain the evolution of the fault network and the slip rate through time, by two independent approaches: - historical thermal modeling of a basin of the Sea of Marmara; - definition of a Mass Transport Deposit as a fault lateral slip marker, and dated by stratigraphic interpretation. We show that: - (1) the present day fault system, formed by a main fault which accommodated the main part of the inter-plate deformation does not significantly evolved since 330.000 ± 100.000 years - (2) a progressive reorganization of the fault network occurred since the last 2.5-1.5 Ma.Secondly, we discuss the triggers of Mass Transport Processes. We show that: - (1) despite submarine mass movements are related to tectonic activity (mainly earthquakes and crustal stretching), their frequency and their size are also modulated by glacio-eustatic changes; -(2) remarkable Mass Transport Deposits display some cyclicity in stratigraphic sequences which are apparently correlated to transitions between salty marine and lacustrine environments. This cyclicity is perhaps explained by marine clay activity (swelling) under low brackish-fresh water conditions, which can trigger sediment destabilization.Third, we investigate the diversity of active fluid seepages contexts. We propose that the widespread occurrence of fluid expulsion sites can be explained by up-dip gas migration by buoyancy along permeable strata toward their edges, and along fractures within the basement toward both the edges of the basins and topographic highs.
9

Evaluation of the Nordland Group overburden as an effective seal for the Sleipner CO2 storage site (offshore Norway) using analytical and stochastic modelling techniques

Nicoll, Grant Douglas January 2012 (has links)
Saline aquifers and depleted hydrocarbon fields situated beneath the North Sea are currently being proposed as storage repositories for anthropogenic CO2 captured from point source emitters in the UK and mainland Europe. Two experimental sites are already operating successfully offshore Norway: Sleipner since 1996 and Snøhvit since 2007, collectively storing several million tonnes of CO2/year in the sub-surface. Despite the apparent success of these current projects, one of the major public and scientific concerns is the ability of storage sites to retain CO2 on the millennial timescales required for CO2 plume stabilisation and dissolution. Some areas of the North Sea are also known to contain palaeo-gas seepage pathways within overburden sediments that overlie deeper hydrocarbon reservoirs (e.g. Witch Ground Graben). These areas either need to be avoided for CO2 storage or rigorously assessed in terms of leakage risk. Since the Sleipner storage site lies within such a province, this thesis delivers a detailed evaluation of the Nordland Group overburden and a critical assessment of its long-term sealing capability for CO2. From interpretation and detailed mapping of a baseline 3D seismic dataset (acquired before CO2 injection operations commenced in 1996), we have identified numerous palaeo-migration pathways and high-amplitude seismic anomalies within the Nordland Group overburden sediments deposited above the Sleipner CO2 storage site. We attributed these features to thermogenic or biogenic gas migration, accumulation and bio-degradation over geological time. We also mapped a complex network of sand-filled, glacial channels and tunnel valleys distributed within a few hundred metres below seabed and highlighted their significance as potential fluid migration networks and/or secondary storage containment for leaking CO2. Of further significance, we confirmed that these overburden features also create spatial density variations that impact on the accuracy of seismic time-depth conversions, resulting in the probability of topographic distortions being propagated into seismic interpretations and models. To the best of our knowledge no such detailed mapping of the Nordland Group overburden at Sleipner has been undertaken previously. To determine whether the top layer of the CO2 plume at Sleipner might encounter these relict pathways as it ascends and migrates laterally beneath the caprock, we evaluated the critical column heights required for a CO2 accumulation to enter such a pathway under a range of storage conditions for a CH4/CO2/brine system; assuming that these pathways currently contain methane gas. Risking scenarios were based on a range of phase saturation, pressure, temperature, density, viscosity, interfacial tension and wettability conditions likely to be encountered at depths commensurate with the caprock at Sleipner. We concluded that given certain conditions at the caprock, CO2 could leak more easily into palaeo-migration pathways than CH4 (i.e. at lower entry pressures and therefore smaller column heights), assuming that brine densities and, most importantly, pore radii have not changed significantly over geological time (i.e. no cementation or dissolution has taken place). To further understand the dynamic significance of these palaeo-migration pathways, channels and tunnel valleys, including their ability to form inter-connected leakage/migration networks, we constructed a series of high-resolution 3D models of the Sleipner storage site and overburden, then used stochastic basin modelling and simulation techniques to investigate the processes involved during the introduction of CO2 into the storage site over a prolonged time period. Models were populated with geological, stratigraphic and structural information derived from our seismic interpretation. Flow simulations were calibrated to published data and matched to the present-day plume distribution. The absence of observational reservoir pressure and temperature data from Sleipner introduces significant uncertainty to model outcomes with respect to CO2 density and column height estimates and to surmount this difficulty we constrained the caprock temperature to CO2 density estimates obtained from the most recent gravity data observations at Sleipner. We concluded that the overburden heterogeneity is significant and palaeo-migration pathways, highpermeability channels and tunnel valleys at Sleipner may become potential migration pathways for CO2 as the plume continues to spread laterally over the coming decade, but the possible storage response is difficult to quantify given the absence of sufficient overburden rock property information and accurate pressure and temperature data for the storage site. The overall conclusion from this work is that insufficient information was collected within the Sleipner area prior to storage site development and too many significant studies which should have been performed as a pre-requisite (e.g. obtaining a caprock sample for laboratory testing of potential seal capacity), were actually performed some years after CO2 injection operations had already commenced. The pressure and temperature conditions at the caprock depth for the Sleipner storage site are also marginal in terms of maintaining CO2 above critical point conditions in dense phase and thus maximising storage efficiency. Most significantly, no rigorous overburden mapping and risking was performed for Sleipner (such as the work described in this thesis), thus the fact that no leakage has been detected at Sleipner is more due to good fortune than following best practices. Hopefully, our work has highlighted these key deficiencies so that future CO2 storage site feasibility and development studies will be performed more diligently.

Page generated in 0.1183 seconds