• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accuracy and Computational Stability of Tensorally-Correct Subgrid Stress and Scalar Flux Representations in Autonomic Closure of LES

January 2020 (has links)
abstract: Autonomic closure is a recently-proposed subgrid closure methodology for large eddy simulation (LES) that replaces the prescribed subgrid models used in traditional LES closure with highly generalized representations of subgrid terms and solution of a local system identification problem that allows the simulation itself to determine the local relation between each subgrid term and the resolved variables at every point and time. The present study demonstrates, for the first time, practical LES based on fully dynamic implementation of autonomic closure for the subgrid stress and the subgrid scalar flux. It leverages the inherent computational efficiency of tensorally-correct generalized representations in terms of parametric quantities, and uses the fundamental representation theory of Smith (1971) to develop complete and minimal tensorally-correct representations for the subgrid stress and scalar flux. It then assesses the accuracy of these representations via a priori tests, and compares with the corresponding accuracy from nonparametric representations and from traditional prescribed subgrid models. It then assesses the computational stability of autonomic closure with these tensorally-correct parametric representations, via forward simulations with a high-order pseudo-spectral code, including the extent to which any added stabilization is needed to ensure computational stability, and compares with the added stabilization needed in traditional closure with prescribed subgrid models. Further, it conducts a posteriori tests based on forward simulations of turbulent conserved scalar mixing with the same pseudo-spectral code, in which velocity and scalar statistics from autonomic closure with these representations are compared with corresponding statistics from traditional closure using prescribed models, and with corresponding statistics of filtered fields from direct numerical simulation (DNS). These comparisons show substantially greater accuracy from autonomic closure than from traditional closure. This study demonstrates that fully dynamic autonomic closure is a practical approach for LES that requires accuracy even at the smallest resolved scales. / Dissertation/Thesis / Doctoral Dissertation Aerospace Engineering 2020
2

A fundamental approximation in MATLAB of the efficiency of an automotive differential in transmitting rotational kinetic energy

Vaughn, James Roy 30 July 2012 (has links)
The VCOST budgeting tool uses a drive cycle simulator to improve fuel economy predictions for vehicle fleets. This drive cycle simulator needs to predict the efficiency of various components of the vehicle's powertrain including any differentials. Existing differential efficiency models either lack accuracy over the operating conditions considered or require too great an investment. A fundamental model for differential efficiency is a cost-effective solution for predicting the odd behaviors unique to a differential. The differential efficiency model itself combines the torque balance equation and the Navier-Stokes equations with models for gear pair, bearing, and seal efficiencies under a set of appropriate assumptions. Comparison of the model with existing data has shown that observable trends in differential efficiency are reproducible in some cases to within 10% of the accepted efficiency value over a range of torques and speeds that represents the operating conditions of the differential. Though the model is generally an improvement over existing curve fits, the potential exists for further improvement to the accuracy of the model. When the model performs correctly, it represents an immense savings over collecting data with comparable accuracy. / text

Page generated in 0.364 seconds