• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 29
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 120
  • 22
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Temperature, pressure, and infrared image survey of an axisymmetric heated exhaust plume

Nelson, Edward L. 06 June 2008 (has links)
The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate Computational Fluid Dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte-Carlo ray trace algorithm and an infrared band model for exhaust gases. This dissertation describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte-Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables. / Ph. D.
92

Acceleration techniques for the radiative analysis of general computational fluid dynamics solutions using reverse Monte-Carlo ray tracing

Turk, Jeffrey A. 19 September 2008 (has links)
A reverse Monte-Carlo ray trace capable of performing a radiative analysis on arbitrary multiple overlapping structured computational fluid dynamics solution sets is developed. In order to make effective use of time, a method based on a set of simplifying assumptions but using the same calculation procedures is developed for comparison and study purposes. Three acceleration techniques are tried. One acceleration technique reduces the grid dimensions to reduce the number of volumes intersected. The second acceleration technique develops a version of the code for execution in a parallel processing environment. The third acceleration technique mixes an orthogonal, evenly spaced grid with the computational fluid dynamics grids to obtain fast ray traversal of low variance areas while retaining the higher resolution of the computational fluid dynamics grids in the high variance areas. Two experimental data sets are used for comparison and as test cases during these studies: an exhaust plume from an auxiliary power unit, and a Boeing 747 in flight. Timing for the baseline and accelerated analyses is provided as well as numerical comparisons for a selected subset. / Ph. D.
93

Transport and dispersion of fire extinguishing agents downstream from clutter elements of aircraft engine nacelles

Unknown Date (has links)
The combination of highly turbulent airflow, flammable fluids, and numerous ignition sources makes aircraft engine nacelles a difficult fire zone to protect. Better understanding of nacelle air flow and how it influences the spread of fires and fire extinguishing agents is needed to improve the efficiency of fire suppression. The first objective was to establish a CFD model for a flow field test section to analyze the transport and dispersion of fire extinguishing agents in the presence of various clutter elements. To validate the use of the CFD model, the simulation results of the CFD model were compared to the experimental data and they show an agreement with the experimental data. The second objective was to present parametric studies to show the effects of the coflow speed, turbulence intensity and agent droplet size on the transport and dispersion of the agent particles downstream from the clutter elements. / by Khaled Zbeeb. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
94

Analysis of ship hull and plate vibrations caused by wave forces

Unknown Date (has links)
In the present dissertation, the hydrodynamic and hydro-elastic characteristics of ship hull and plate vibrations are analyzed using theoretical and numerical methods. The wave forces are determined using a suite of methods which include the Froude-Krylov method for incident wave forces, Wagner's method and ABS rules for the slamming wave force, and numerical methods for nonlinear wave radiation forces. Finite difference methods are developed to determine the wave forced vibrations of ship hull plates which are modeled using a range of plate theories including nonlinear plate theory with and without material damping and orthotropic plate theory for stiffened hull plates. For small amplitude deformation of thin plates, a semi-theoretical superposition method is used to determine the free and forced vibrations. The transient ship hull vibration due to whipping is also analyzed using the finite difference method. Results, in the form of deformations and stress distributions, are obtained for a range of scantling and wave parameters to identify key parameters to consider in ship structural design. / by Fnu Lakitosh. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
95

On numerical studies of explosion and implosion in air.

January 2006 (has links)
Fu Sau-chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 68-71). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background of Explosion and Implosion Problems --- p.1 / Chapter 1.2 --- Background of the Development of Numerical Schemes --- p.2 / Chapter 1.3 --- Organization of the Thesis --- p.5 / Chapter 2 --- Governing Equations and Numerical Schemes --- p.6 / Chapter 2.1 --- Governing Equations --- p.6 / Chapter 2.2 --- Numerical Schemes --- p.8 / Chapter 2.2.1 --- Splitting Scheme for Partial Differential Equations with Source Terms --- p.8 / Chapter 2.2.2 --- Boundary Conditions --- p.9 / Chapter 2.2.3 --- "Numerical Solvers for the ODEs - The Second-Order, Two-Stage Runge-Kutta Method" --- p.10 / Chapter 2.2.4 --- Numerical Solvers for the Pure Advection Hyperbolic Problem - The Second-Order Relaxed Scheme --- p.11 / Chapter 3 --- Numerical Results --- p.29 / Chapter 3.1 --- Spherical Explosion Problem --- p.30 / Chapter 3.1.1 --- Physical Description --- p.32 / Chapter 3.1.2 --- Comparison with Previous Analytical and Experimental Results --- p.33 / Chapter 3.2 --- Cylindrical Explosion Problem --- p.46 / Chapter 3.2.1 --- Physical Description --- p.46 / Chapter 3.2.2 --- Two-Dimensional Model --- p.49 / Chapter 3.3 --- Spherical Implosion Problem --- p.52 / Chapter 3.3.1 --- Physical Description --- p.52 / Chapter 3.4 --- Cylindrical Implosion Problem --- p.53 / Chapter 3.4.1 --- Physical Description --- p.53 / Chapter 3.4.2 --- Two-Dimensional Model --- p.53 / Chapter 4 --- Conclusion --- p.65 / Bibliography --- p.68
96

Investigation of Copper Foam Coldplates as a High Heat Flux Electronics Cooling Solution

Wilson, Scott E. 28 April 2005 (has links)
Compact heat exchangers such as porous foam coldplates have great potential as a high heat flux cooling solution for electronics due to their large surface area to volume ratio and tortuous coolant path. The focus of this work was the development of unit cell modeling techniques for predicting the performance of coldplates with porous foam in the coolant path. Multiple computational fluid dynamics (CFD) models which predict porous foam coldplate pressure drop and heat transfer performance were constructed and compared to gain insight into how to best translate the foam microstructure into unit cell model geometry. Unit cell modeling in this study was realized by applying periodic boundary conditions to the coolant entrance and exit faces of a representative unit cell. A parametric study was also undertaken which evaluated dissimilar geometry translation recommendations from the literature. The use of an effective thermal conductivity for a representative orthogonal lattice of rectangular ligaments was compared to a porosity-matching technique of a similar lattice. Model accuracy was evaluated using experimental test data collected from a porous copper foam coldplate using deionized water as coolant. The compact heat exchanger testing facility which was designed and constructed for this investigation was shown to be capable of performing tests with coolant flow rates up to 300 mL/min and heat fluxes up to 290 W/cm2. The greatest technical challenge of the testing facility design proved to be the method of applying the heat flux across a 1 cm2 contact area. Based on the computational modeling results and experimental test data, porous foam modeling recommendations and porous foam coldplate design suggestions were generated.
97

A three dimensional finite element method and multigrid solver for a Darcy-Stokes system and applications to vuggy porous media

San Martin Gomez, Mario 28 August 2008 (has links)
Not available / text
98

A three dimensional finite element method and multigrid solver for a Darcy-Stokes system and applications to vuggy porous media

San Martin Gomez, Mario, 1968- 16 August 2011 (has links)
Not available / text
99

WELLS IMAGED ABOUT AN INTERFACE: A MATHEMATICAL MODEL

Fukumori, Eiji January 1982 (has links)
No description available.
100

Numerical simulation of pressure response in partially completed oil wells.

Strauss, Jonathan Patrick. January 2002 (has links)
This work is concerned with the application of finite difference simulation to modelling the pressure response in partially penetrating oil wells. This has relevance to the oil and hydrology industries where pressure behaviour is used to infer the nature of aquifer or reservoir properties, particularly permeability. In the case of partially penetrating wells, the pressure response carries information regarding the magnitude of permeability in the vertical direction, a parameter that can be difficult to measure by other means and one that has a direct influence on both the total volumes of oil that can be recovered and on the rate of recovery. The derivation of the non-linear differential equations that form the basis for multiphase fluid flow in porous media is reviewed and it is shown how they can be converted into a set of finite difference equations. Techniques used to solve these equations are explained, with particular emphasis on the approach followed by the commercial simulation package used in this study. This involves use of Newton's method to linearize the equations followed by application of a pre-conditioned successive minimization technique to solve the resulting linear equations. Finite difference simulation is applied to a hypothetical problem of solving pressure response in a partially penetrating well in an homogenous but anisotropic medium and the results compared with those from analytical solutions. Differences between the results are resolved, demonstrating that the required level of accuracy can be achieved through selective use of sufficiently small grid blocks and time-steps. Residual discrepancies with some of the analytical methods can be traced to differences in the boundary conditions used in their derivation. The simulation method is applied to matching a complex real-life well test with vertical and lateral variation in properties (including fluid saturation). An accurate match can be achieved through judicious adjustment of the problem parameters with the proviso that the vertical permeability needs to be high. This suggests that the recovery mechanism in the oil field concerned can be expected to be highly efficient, something that has recently been confirmed by production results. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2002.

Page generated in 0.1439 seconds