• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 941
  • 82
  • 77
  • 69
  • 38
  • 13
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2229
  • 2229
  • 553
  • 477
  • 445
  • 398
  • 366
  • 309
  • 302
  • 248
  • 170
  • 155
  • 147
  • 146
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Analysis of laminar and turbulent flows with turbomachinery, biotechnology and biomechanical applications

Mårtensson, Gustaf January 2006 (has links)
The goal of this study was initially to gain a better understanding of the effects of rotation on turbulent flow in ducts. Knowledge concerning the influence of rotation on the structures of turbulence is of fundamental importance in many applications, e.g. centrifugal separators, turbines or cooling channels in rotating machinery, as well as meteorology and oceanography. Rapidly rotating duct flow is studied experimentally with rotation numbers in the interval [ 0, 1] . To achieve this, in combination with relatively high Reynolds numbers (5000 – 30000 based on the hydraulic radius), water was used as the working medium. The influence of the rotation on the pressure drop in the duct was investigated and suitable scalings of this quantity were studied. Due to questions that arose in the experimental study, two numerical studies were initiated. The first study probed the effect of rotation and geometrical configuration on the development length for turbulent flow, while the second comprised a direct numerical simulation of turbulent flow in a rotating duct. It is shown that while system rotation does not have a marked effect on the development length in a plane channel, the development length is substantially shortened in a duct. Additional systems subject to rotation or curvature effects were studied. The laminar flow of fluid in a rotating PCR-cone was analysed analytically and numerically to understand the increased mixing and temperature homogenization. The flow field in the cone was described and the increased mixing was due to a strong boundary layer flow incited by Coriolis and buoyancy effects. Comparisons of the numerical simulations with experiments yielded good results. A study to quantify the flow of blood in cerebral malformations using three-dimensional videodensitometry was performed. Data from experiments with an idealized flow phantom, as well clinical pathologies, showed that the proposed methodology in conjunction with clinical injection protocols can yield mean flux data with an error less than 20%. Protocol improvements are proposed.
382

Impact Loading of Composite and Sandwich Structures

Kazemahvazi, Sohrab January 2010 (has links)
Low weight is one of the most important factors in the design process of high speed naval ships, road vehicles and aircrafts. Lower structural weight enables the possibility of down-sizing the propulsion system and thus decrease manufacturing and operating costs as well as reducing the environmental impact. Two efficient ways of reducing the structural weight of a structure is by using high performance composite materials and by using geometrically efficient structures such as the sandwich concept. In addition to good quasi-static performance different structures have dynamic impact requirements. For a road vehicle this might be crash worthiness, an aircraft has to be able to sustain bird strikes or debris impact and a naval ship needs to be protected against blast or ballistic loading. In this thesis important aspects of dynamic loading of composite and sandwich structures are addressed and presented in the appended papers as follows. In paper A the notch sensitivity of non-crimp fabric glass bre composites is investigated. The notch sensitivity is investigated for several different laminate con gurations at varying tensile loading rate. It is shown that the non-crimp fabrics have very low notch sensitivity, especially for laminate con gurations with a large amount of bres in the load direction. Further, the notch sensitivity is shown to be fairly constant with increasing loading rates (up to 100/s). In paper B a heuristic approach is made in order to create an analytical model to predict the residual strength of composite laminates with multiple randomly distributed holes. The basis for this model is a comprehensive experimental programme. It is found that unidirectional laminates with holes predominantly fail through three failure modes: global net-section failure, local net-section failure and local shear failure. Each failure mode can be described by a physical geometric constant which is used to create the analytical model. The analytical model can predict the residual strength of unidirectional laminates with multiple, randomly distributed holes with good accuracy. In paper C and paper D, novel prismatic high performance all-composite sandwich cores are proposed. In paper C an analytical model is developed that predicts the strength and sti ness properties of the suggested cores. In paper D the prismatic cores are manufactured and tested in shear loading and out-of-plane compression loading. Further, the analytical model is used to create failure mechanism maps to map out the overall behaviour of the different core con gurations. The novel cores show very high speci c strength and sti ness and are potential candidates as cores in high performance naval ship hulls. In paper E the dynamic properties of prismatic composite cores are investigated. The dynamic out-of-plane strength of an unit cell is tested experimentally in a gas gun - Kolsky bar set-up. Especially, different failure mechanisms and their e ect on the structural strength are investigated. It is found that cores with low relative density (slender core members) show very large inertial stabilisation e ects and have a dynamic strength that can be more than seven times higher than the quasi-static strength. Cores with higher relative density show less increase in dynamic strength. The main reason for the dynamic strengthening is due to the strain rate sensitivity of the parent material rather than inertial stabilisation of the core members. / QC 20101014
383

Numerical stability studies of one-phase and immiscible two-phase jets and wakes

Tammisola, Outi January 2011 (has links)
The initial linear instability growth of two-dimensional plane wakes and jetsis investigated, by temporal two-dimensional global modes, and local spatialstability analysis. Comparisons are also made to experiments, direct numericalsimulations, and methods designed for weakly-non-parallel flows. The studiesproceed through three different flow setups with increasing complexity.The first flow analysed is a convectively unstable liquid sheet surroundedby a stagnant or co-flowing gas. The experimentally measured growth rates arefound to be in excellent agreement with spatial stability calculations, if the airboundary layer is taken into account, and not otherwise. The stabilizing effectof moderate air co-flow is quantified in the numerical study, and the governingparameters found to be the speed difference between water and air, and theshear from air at the water surface (inversely proportional to the air boundarylayer thickness).The second flow case is a one-phase confined wake, i.e. a wake in a channel.The effect of confinement (wall distance) on the global stability of wakes isanalysed by linear global modes, and compared to the results from DNS andweakly-non-parallel theory. At Re = 100, confinement is globally stabilizing,mostly due to a faster development towards a parabolic profile for confinedflows. The stabilizing effect of confinement almost disappears at Re ≈ 400.However, when the structural sensitivity of the wakes is analysed by an adjointbasedapproach, fundamental differences are seen in the global wavemakers ofconfined and unconfined wakes at Re ≈ 400.The third and most complex flow case is immiscible two-fluid wakes andjets. A parallel multi-domain spectral code is developed, where the kinematicand dynamic conditions on the interface are imposed as coupling conditions. Itis shown that intermediate values of surface tension can destabilize stable wakesand jets. In addition, surface tension has a considerable influence on the globaloscillation frequency and spatial shape of the global mode for unstable wakes.The character of the mode is gradually changed from a wake instability to aglobal shear layer instability. Both symmetric and antisymmetric modes areencountered for both wakes and jets, depending on the strength of the surfacetension (value of the Weber number) and the flow case.iii / QC 20110530
384

Numerical studies of turbulent wall-jets for mixing and combustion applications

Ahlman, Daniel January 2007 (has links)
Direct numerical simulation is used to study turbulent plane wall-jets. The investigation is aimed at studying dynamics, mixing and reactions in wall bounded flows. The produced mixing statistics can be used to evaluate and develop models for mixing and combustion. An aim has also been to develop a simulation method that can be extended to simulate realistic combustion including significant heat release. The numerical code used in the simulations employs a high order compact finite difference scheme for spatial integration, and a low-storage Runge-Kutta method for the temporal integration. In the simulations the inlet based Reynolds and Mach numbers of the wall-jet are Re = 2000 and M=0.5 respectively, and above the jet a constant coflow of 10% of the inlet jet velocity is applied. The development of an isothermal wall-jet including passive scalar mixing is studied and the characteristics of the wall-jet are compared to observations of other canonical shear flows. In the near-wall region the jet resembles a zero pressure gradient boundary layer, while in the outer layer it resembles a plane jet. The scalar fluxes in the streamwise and wall-normal direction are of comparable magnitude. In order to study effects of density differences, two non-isothermal wall-jets are simulated and compared to the isothermal jet results. In the non-isothermal cases the jet is either warm and propagating in a cold surrounding or vice versa. The turbulence structures and the range of scales are affected by the density variation. The warm jet contains the largest range of scales and the cold the smallest. The differences can be explained by the varying friction Reynolds number. Conventional wall scaling fails due to the varying density. An improved collapse in the inner layer can be achieved by applying a semi-local scaling. The turbulent Schmidt and Prandtl number vary significantly only in the near-wall layer and in a small region below the jet center. A wall-jet including a single reaction between a fuel and an oxidizer is also simulated. The reactants are injected separately at the inlet and the reaction time scale is of the same order as the convection time scale and independent of the temperature. The reaction occurs in thin reaction zones convoluted by high intensity velocity fluctuations. / QC 20100621
385

A study on axially rotating pipe and swirling jet flows

Facciolo, Luca January 2006 (has links)
The present study is an experimental and numerical investigation on rotating flows. A special facility has been built in order to produce a turbulent swirling jet generated by a fully developed rotating pipe flow and a Direct Numerical Simulation (DNS) code has been used to support and to complement the experimental data. The work is so naturally divided into two main parts: the turbulent rotating pipe flow and the swirling jet. The turbulent pipe flow has been investigated at the outlet of the pipe both by hot-wire anemometry and Laser Doppler Velocimetry (LDV). The LDV has also been used to measure the axial velocity component inside the pipe. The research presents the effects of the rotation and Reynolds number (12000 Re 33500) on a turbulent flow and compares the experimental results with theory and simulations. In particular a comparison with the recent theoretical scalings by Oberlack (1999) is made. The rotating pipe flow also represents the initial condition of the jet. The rotation applied to the jet drastically changes the characteristics of the flow field. The present experiment, investigated with the use of hot-wire, LDV and stereoscopic Particle Image Velocimerty (PIV) and supported by DNS calculation, has been performed mainly for weak swirl numbers (0 S 0.5). All the velocity components and their moments are presented together with spectra along the centreline and entrainment data. Time resolved stereoscopic PIV measurement showed that the flow structures within the jet differed substantially between the swirling and no swirling cases. The research had led to the discovery of a new phenomenon, the formation of a counter rotating core in the near field of a swirling jet. Its presence has been confirmed by all the investigation techniques applied in the work. / QC 20100820
386

Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

Sarchami, Araz 06 December 2012 (has links)
A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water.It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.
387

Effect of heating upon mass flow rate through ports of a manifold

Safar, Lewis Anthony 05 1900 (has links)
No description available.
388

A study of turbulence and scalar mixing in a wall-jet using direct numerical simulation

Ahlman, Daniel January 2006 (has links)
<p>Direct numerical simulation is used to study the dynamics and mixing in a turbulent plane wall-jet. The investigation is undertaken in order to extend the knowledge base of the influence of the wall on turbulent dynamics and mixing. The mixing statistics produced can also be used to evaluate and develop models for mixing and combustion. In order to perform the simulations, a numerical code was developed. The code employs compact finite difference schemes, of high order, for spatial integration, and a low-storage Runge-Kutta method for the temporal integration. In the simulations performed the inlet based Reynolds and Mach numbers of the wall jet were R<i>e</i> = 2000 and M=0.5, respectively. Above the jet a constant coflow of 10% of the inlet jet velocity was applied. A passive scalar was added at the inlet of the jet, in a non-premixed manner, enabling an investigation of the wall-jet mixing as well as the dynamics. The mean development and the respective self-similarity of the inner and outer shear layers were studied. Comparisons of properties in the shear layers of different character were performed by applying inner and outer scaling. The characteristics of the wall-jet was compared to what has been observed in other canonical shear flows. In the inner part of the jet, 0 ≤ y<sup>+</sup> ≤ 13, the wall-jet was found to closely resemble a zero pressure gradient boundary layer. The outer layer was found to resemble a free plane jet. The downstream growth rate of the scalar was approximately equal to that of the streamwise velocity, in terms of the growth rate of the half-width. The scalar fluxes in the streamwise and wall-normal direction were found to be of comparable magnitude.</p>
389

Analysis of laminar and turbulent flows with turbomachinery, biotechnology and biomechanical applications

Mårtensson, Gustaf January 2006 (has links)
<p>The goal of this study was initially to gain a better understanding of the effects of rotation on turbulent flow in ducts. Knowledge concerning the influence of rotation on the structures of turbulence is of fundamental importance in many applications, e.g. centrifugal separators, turbines or cooling channels in rotating machinery, as well as meteorology and oceanography. Rapidly rotating duct flow is studied experimentally with rotation numbers in the interval [ 0, 1] . To achieve this, in combination with relatively high Reynolds numbers (5000 – 30000 based on the hydraulic radius), water was used as the working medium. The influence of the rotation on the pressure drop in the duct was investigated and suitable scalings of this quantity were studied. Due to questions that arose in the experimental study, two numerical studies were initiated. The first study probed the effect of rotation and geometrical configuration on the development length for turbulent flow, while the second comprised a direct numerical simulation of turbulent flow in a rotating duct. It is shown that while system rotation does not have a marked effect on the development length in a plane channel, the development length is substantially shortened in a duct.</p><p>Additional systems subject to rotation or curvature effects were studied. The laminar flow of fluid in a rotating PCR-cone was analysed analytically and numerically to understand the increased mixing and temperature homogenization. The flow field in the cone was described and the increased mixing was due to a strong boundary layer flow incited by Coriolis and buoyancy effects. Comparisons of the numerical simulations with experiments yielded good results.</p><p>A study to quantify the flow of blood in cerebral malformations using three-dimensional videodensitometry was performed. Data from experiments with an idealized flow phantom, as well clinical pathologies, showed that the proposed methodology in conjunction with clinical injection protocols can yield mean flux data with an error less than 20%. Protocol improvements are proposed.</p>
390

Mechanical models for electrical cables

Inagaki, Kenta January 2005 (has links)
<p>A theoretical and experimental study of mechanical properties of electrical cables with multi order helical structure has been performed. Relations between applied deformations and local strains in the first order helical structure have been developed. The model is then generalized with a hierarchical approach where the strains at any order helical structure are expressed as functions of strains in the upper order helix under the assumption that all components are sticking to each other.</p><p>The force balance between the strains and the friction forces is considered. When the cable is exposed to small bending curvature, the slippage of the component is prevented by the frictional force. At this stage, the components of the cable behave as solid beams. Slippage occurs between the components when the tensile force in the components overcomes the frictional force. This state occurs at sufficiently large bending curvatures and results in a variable bending stiffness varying with the magnitude of the applied bending curvature.</p><p>The response of the cable to pure bending is measured and the data is evaluated using the theoretical model described above. Magnitudes of un- known properties of the cable are estimated by comparing the theoretical and experimental data. To utilize the model in terms of life time estimation, a number of parameters were suggested to relate the mechanical properties of the cable to wear and fatigue. A parametric study has been done to investigate how these parameters are affected by changing cable properties or the loading condition.</p>

Page generated in 0.0489 seconds