• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 21
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of motion compensated ADV measurements for quantifying velocity fluctuations

Unknown Date (has links)
This study assesses the viability of using a towfish mounted ADV for quantifying water velocity fluctuations in the Florida Current relevant to ocean current turbine performance. For this study a motion compensated ADV is operated in a test flume. Water velocity fluctuations are generated by a 1.3 cm pipe suspended in front of the ADV at relative current speeds of 0.9 m/s and 0.15 m/s, giving Reynolds numbers on the order of 1000. ADV pitching motion of +/- 2.5 [degree] at 0.3 Hz and a heave motion of 0.3 m amplitude at 0.2 Hz are utilized to evaluate the motion compensation approach. The results show correction for motion provides up to an order of magnitude reduction in turbulent kinetic energy at frequencies of motion while the IMU is found to generate 2% error at 1/30 Hz and 9% error at 1/60 Hz in turbulence intensity. / by James William Lovenbury. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
12

Computational study of high order numerical schemes for fluid-structure interaction in gas dynamics.

Pedro, Jose Caluyna. 17 December 2013 (has links)
Solving the fluid-structure interaction (FSI) problems is particularly challenging. This is because the coupling of the fluid and structure may require different solvers in different points of the solution domain, and with different mesh requirements. In this thesis, a partitioned approach is considered. Two solvers are employed to deal with each part of the problem (fluid and structure), where the interaction process is realized via exchanging information from the fluid-structure interface in a staggered fashion. One of the advantages of this approach is that we can take advantage of the existing algorithms that have been used for solving fluid or structural problems, which leads a reduction in the code development time, Hou (2012). However, it requires careful implementation so that spurious results in terms of stability and accuracy can be avoided. We found that most fluid-structure interaction computations through a staggered approach are based on at most second order time integration methods. In this thesis we studied the performance of some high order fluid and structure dynamic methods, when applied in a staggered approach to an FSI problem in a structure prediction way by combining predictors with time integration schemes to obtain stable schemes. Nonlinear Euler equations for gas dynamics were investigated and the analysis was realized through the piston problem. An adapted one-dimensional high order finite volume WENO₃ scheme for nonlinear hyperbolic conservation laws-Dumbser (2007a), Dumbser et al. 2007b)-was considered and a numerical flux was proposed. The numerical results of the proposed method show the non-oscillatory property when compared with traditional numerical methods such as the Local Lax-Friedrichs. So far to our knowledge, the WENO₃₋ as proposed in this work- has not been applied to FSI problems. Thus, it was proposed to discretize the fluid domain in space, and in order to adapt it to a moving mesh was reformulated to couple with an Arbitrary Lagrangian Eulerian (ALE) approach. To integrate in time the structure we started by using Newmark schemes as well as the trapezoidal-rule backward differentiation formulae of order 2 (TR − BDF2). Two study cases were carried out by taking into account the transient effects on the fluid behaviour. In the first case, we only consider the structural mass in the dynamic coupled system and in the second case, a quasi-steady fluid was considered. In order to test the performance of the structural solvers, simulations were carried out, firstly, without the contribution of fluid mass, and then a comparative study of the performance of various structure solvers in a staggered approach framework were realized in order to study the temporal accuracy for the partitioned fluid-structure interaction coupling. For a quasi-steady fluid case, the oscillation frequency of the coupled system was successfully estimated using the TR-BDF2 scheme, and the coupled system was solved for various Courant numbers in a structural predictor fashion. The results showed better performance of the TR-BDF2 scheme. Newmark’s schemes as well as the TR-BDF2 are only second order accuracy. However, the Newmark (average acceleration) is traditionally preferred by researchers as a structure solver in a staggered approach for FSI problems, although higher order schemes do exist. van Zuijlen (2004), in his partitioned algorithm proposed the explicit singly diagonal implicit Runge-Kutta (ESDIRK) family of schemes of order 3 to 5 to integrate both fluid and structure. Therefore in this work, these schemes were considered and applied as structural solvers. Their performance was studied through numerical experiments, and comparisons were realized with the performance of the traditional Newmark’s schemes. The results show that although their computational cost is high, they present a high order of accuracy. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
13

Numerical study of platelet transport in flowing blood

Fiechter, Jerome 08 1900 (has links)
No description available.
14

Spectral evaluation of motion compensated adv systems for ocean turbulence measurements

Unknown Date (has links)
A motion compensated ADV system was evaluated to determine its ability to make measurements necessary for characterizing the variability of the ambient current in the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was quantified, as well as and the ability of the motion compensation approach to remove sensor motion from the ADV measurements. The presented data processing techniques are shown to allow the evaluated ADV to be effectively utilized for quantifying ambient current fluctuations from 0.02 to 1 Hz (50 to 1 seconds) for dissipation rates as low as 3x10-7. This measurement range is limited on the low frequency end by IMU error, primarily by the calculated transformation matrix, and on the high end by Doppler noise. Inshore testing has revealed a 0.37 Hz oscillation inherent in the towfish designed and manufactured as part of this project, which can nearly be removed using the IMU. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
15

Aerodynamic analysis of a propeller in a turbulent boundary layer flow

Unknown Date (has links)
Simulating the exact chaotic turbulent flow field about any geometry is a dilemma between accuracy and computational resources, which has been continuously studied for just over a hundred years. This thesis is a complete walk-through of the entire process utilized to approximate the flow ingested by a Sevik-type rotor based on solutions to the Reynolds Averaged Navier-Stokes equations (RANS). The Multiple Reference Frame fluid model is utilized by the code of ANSYS-FLUENT and results are validated by experimental wake data. Three open rotor configurations are studied including a uniform inflow and the rotor near a plate with and without a thick boundary layer. Furthermore, observations are made to determine the variation in velocity profiles of the ingested turbulent flow due to varying flow conditions. / by Felipe Ferreira Lachowski. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
16

Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk – Rans approach

Unknown Date (has links)
The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech’s Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
17

Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

Vantzos, Orestis 05 1900 (has links)
The goal of this thesis is to study of the evolution of 3D electrically charged liquid droplets of fluid evolving under the influence of surface tension and electrostatic forces. In the first part of the thesis, an appropriate mathematical model of the problem is introduced and the linear stability analysis is developed by perturbing a sphere with spherical harmonics. In the second part, the numerical solution of the problem is described with the use of the boundary elements method (BEM) on an adaptive mesh of triangular elements. The numerical method is validated by comparison with exact solutions. Finally, various numerical results are presented. These include neck formation in droplets, the evolution of surfaces with holes, singularity formation on droplets with various symmetries and numerical evidence that oblate spheroids are unstable.
18

Far-Field Noise From a Rotor in a Wind Tunnel

Unknown Date (has links)
This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor's tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
19

Analysis of Capillary Flow in Interior Corners : Perturbed Power Law Similarity Solutions

McCraney, Joshua Thomas 21 December 2015 (has links)
The design of fluid management systems requires accurate models for fluid transport. In the low gravity environment of space, gravity no longer dominates fluid displacement; instead capillary forces often govern flow. This thesis considers the redistribution of fluid along an interior corner. Following a rapid reduction of gravity, fluid advances along the corner measured by the column length z = L(t), which is governed by a nonlinear partial differential equation with dynamical boundary conditions. Three flow types are examined: capillary rise, spreading drop, and tapered corner. The spreading drop regime is shown to exhibit column length growth L ~ t2/5, where a closed form analytic solution exists. No analytic solution is available for the capillary rise problem. However, a perturbed power law similarity solution is pursued to approximate an analytic solution in the near neighborhood of the exact solution for the spreading drop. It is recovered that L ~ t1/2 for the capillary rise problem. The tapered corner problem is not analytically understood and hence its corresponding L is undocumented. Based on the slender corner geometry, it is natural to hypothesize the tapered corner column length initially behaves like the capillary rise regime, but after sufficient time has elapsed, it transitions into the spreading drop regime. This leads to a conjecture that its column length growth L is restricted to t2/5 < L < t1/2. To verify this conjecture an explicit finite difference numerical solution is developed for all three regimes. As will be shown, the finite difference scheme converges towards the analytic solutions for the spreading drop and capillary rise regimes. From this we assume the finite difference scheme is accurate for corner flows of similar geometries, and thus apply this scheme the more onerous criteria of the tapered corner. Numerical results support the conjectured L behavior for the tapered corner. Understanding the dynamics of such flows and responses to various geometries offers design advantages for spacecraft waste-management systems, fuel control, hydration containment, cryogenic flows, and a myriad of other fluid applications.
20

A multi-paradigm modelling framework for simulating biocomplexity

Kaul, Himanshu January 2013 (has links)
The following thesis presents a computational framework that can capture inherently non-linear and emergent biocomplex phenomena. The main motivation behind the investigations undertaken was the absence of a suitable platform that can simulate, both the continuous features as well as the discrete, interaction-based dynamics of a given biological system, or in short, dynamic reciprocity. In order to determine the most powerful approach to achieve this, the efficacy of two modelling paradigms, transport phenomena as well as agent-based, was evaluated and eventually combined. Computational Fluid Dynamics (CFD) was utilised to investigate optimal boundary conditions, in terms of meeting cellular glucose consumption requirements and exposure to physiologically relevant shear fields, that would support mesenchymal stem cell growth in a 3-dimensional culture maintained in a commercially available bioreactor. In addition to validating the default bioreactor configuration and operational parameter ranges as suitable towards sustaining stem cell growth, the investigation underscored the effectiveness of CFD as a design tool. However, due to the homogeneity assumption, an untenable assumption for most biological systems, CFD often encounters difficulties in simulating the interaction-reliant evolution of cellular systems. Therefore, the efficacy of the agent-based approach was evaluated by simulating a morphogenetic event: development of in vitro osteogenic nodule. The novel model replicated most aspects observed in vitro, which included: spatial arrangement of relevant players inside the nodule, interaction-based development of the osteogenic nodules, and the dependence of nodule growth on its size. The model was subsequently applied to interrogate the various competing hypotheses on this process and identify the one that best captures transformation of osteoblasts into osteocytes, a subject of great conjecture. The results from this investigation annulled one of the competing hypotheses, which purported the slow-down in the rate of matrix deposition by certain osteoblasts, and also suggested the acquisition of polarity to be a non-random event. The agent-based model, however, due to being inherently computationally expensive, cannot be recommended to model bulk phenomena. Therefore, the two approaches were integrated to create a modelling platform that was utilised to capture dynamic reciprocity in a bioreactor. As a part of this investigation, an amended definition of dynamic reciprocity and its computational analogue, dynamic assimilation, were proposed. The multi-paradigm platform was validated by conducting melanoma chemotaxis under foetal bovine serum gradient. Due to its CFD and agent-based modalities, the platform can be employed as both a design optimisation as well as hypothesis testing tool.

Page generated in 0.0958 seconds