• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controls on the sources and distribution of chalcophile and lithophile trace elements in arc magmas

D'Souza, Rameses Joseph 24 January 2018 (has links)
Volcanic arcs have been the locus of continental growth since at least the Proterozoic eon. In this dissertation, I seek to shine more light on arc processes by inferring the lower crustal mineralogy of an ancient arc by geochemical and structural modelling of its exposed levels. Arcs characteristically have high concentrations of incompatible elements, thus I also experimentally assess the ability of alkaline melts and fluids associated with sediment melting to carry lithophile and chalcophile elements in the sub-arc. I measured the chemical composition of 18 plutonic samples from the Bonanza island arc, emplaced between 203 and 164 Ma on the Wrangellia terrane on Vancouver Island, British Columbia. Models using trace elements with Nd and Sr isotopes indicate < 10% assimilation of the Wrangellia basement by the Bonanza arc magmas. The Bonanza arc rare earth element geochemistry is best explained as two lineages, each with two fractionation stages implicating < 15% garnet crystallization. My inference of garnet-bearing cumulates in the unexposed lower crust of the Bonanza arc, an unsuspected similarity with the coeval Talkeetna arc (Alaska), is consistent with estimates from geologic mapping and geobarometry indicating that the arc grew to > 23 km total thickness. The age distribution of the Bonanza arc plutons shows a single peak at 171 Ma whereas the volcanic rock age distribution shows two peaks at 171 and 198 Ma, likely due to sampling and/or preservation bias. Numerous mechanisms may produce the E-W separation of young and old volcanism and this does not constrain Jurassic subduction polarity beneath Wrangellia. Although a small component of arc magmatism, alkaline arc rocks are associated with economic concentrations of chalcophile elements. The effect of varying alkalinity on S Concentration at Sulfide Saturation (SCSS) has not been previously tested. Thus, I conducted experiments on hydrous basaltic andesite melts with systematically varied alkalinity at 1270°C and 1 GPa using piston-cylinder apparatus. At oxygen fugacity two log units below the fayalite magnetite quartz buffer, I find SCSS is correlated with total alkali concentration, perhaps a result of the increased non-bridging oxygen associated with increased alkalinity. A limit to the effect of alkalis on SCSS in hydrous melts is observed at ~7.5 wt.% total alkalis. Using my results and published data, I retrained earlier SCSS models and developed a new empirical model using the optical basicity compositional parameter, predicting SCSS with slightly better accuracy than previous models. Sediment melts contribute to the trace element signature of arcs and the chalcophile elements, compatible in redox-sensitive sulfide, are of particular interest. I conducted experiments at 3 GPa, 950 – 1050°C on sediment melts, determined fluid concentrations by mass balance and report the first fluid-melt partition coefficients (Dfluid/melt) for sediment melting. Compared to oxidized, anhydrite-bearing melts, I observe high Dfluid/melt for chalcophile elements and low values for Ce in reduced, pyrrhotite-bearing melts. Vanadium and Sc are unaffected by redox. The contrasting fluid-melt behaviour of Ce and Mo that I report indicates that melt, not fluid, is responsible for elevated Mo in the well-studied Lesser Antilles arc. / Graduate
2

Interactions between aqueous fluids and silicate melts : equilibration, partitioning and complexation of trace elements

Borchert, Manuela January 2010 (has links)
The origin and evolution of granites has been widely studied because granitoid rocks constitute a major portion of the Earth ́s crust. The formation of granitic magma is, besides temperature mainly triggered by the water content of these rocks. The presence of water in magmas plays an important role due to the ability of aqueous fluids to change the chemical composition of the magma. The exsolution of aqueous fluids from melts is closely linked to a fractionation of elements between the two phases. Then, aqueous fluids migrate to shallower parts of the Earth ́s crust because of it ́s lower density compared to that of melts and adjacent rocks. This process separates fluids and melts, and furthermore, during the ascent, aqueous fluids can react with the adjacent rocks and alter their chemical signature. This is particularly impor- tant during the formation of magmatic-hydrothermal ore deposits or in the late stages of the evolution of magmatic complexes. For a deeper insight to these processes, it is essential to improve our knowledge on element behavior in such systems. In particular, trace elements are used for these studies and petrogenetic interpretations because, unlike major elements, they are not essential for the stability of the phases involved and often reflect magmatic processes with less ambiguity. However, for the majority of important trace elements, the dependence of the geochemical behavior on temperature, pressure, and in particular on the composition of the system are only incompletely or not at all experimentally studied. Former studies often fo- cus on the determination of fluid−melt partition coefficients (Df/m=cfluid/cmelt) of economically interesting elements, e.g., Mo, Sn, Cu, and there are some partitioning data available for ele- ments that are also commonly used for petrological interpretations. At present, no systematic experimental data on trace element behavior in fluid−melt systems as function of pressure, temperature, and chemical composition are available. Additionally, almost all existing data are based on the analysis of quenched phases. This results in substantial uncertainties, particularly for the quenched aqueous fluid because trace element concentrations may change upon cooling. The objective of this PhD thesis consisted in the study of fluid−melt partition coefficients between aqueous solutions and granitic melts for different trace elements (Rb, Sr, Ba, La, Y, and Yb) as a function of temperature, pressure, salinity of the fluid, composition of the melt, and experimental and analytical approach. The latter included the refinement of an existing method to measure trace element concentrations in fluids equilibrated with silicate melts di- rectly at elevated pressures and temperatures using a hydrothermal diamond-anvil cell and synchrotron radiation X-ray fluorescence microanalysis. The application of this in-situ method enables to avoid the main source of error in data from quench experiments, i.e., trace element concentration in the fluid. A comparison of the in-situ results to data of conventional quench experiments allows a critical evaluation of quench data from this study and literature data. In detail, starting materials consisted of a suite of trace element doped haplogranitic glasses with ASI varying between 0.8 and 1.4 and H2O or a chloridic solution with m NaCl/KCl=1 and different salinities (1.16 to 3.56 m (NaCl+KCl)). Experiments were performed at 750 to 950◦C and 0.2 or 0.5 GPa using conventional quench devices (externally and internally heated pressure vessels) with different quench rates, and at 750◦C and 0.2 to 1.4 GPa with in-situ analysis of the trace element concentration in the fluids. The fluid−melt partitioning data of all studied trace elements show 1. a preference for the melt (Df/m < 1) at all studied conditions, 2. one to two orders of magnitude higher Df/m using chloridic solutions compared to experiments with H2O, 3. a clear dependence on the melt composition for fluid−melt partitioning of Sr, Ba, La, Y, and Yb in experiments using chloridic solutions, 4. quench rate−related differences of fluid−melt partition coefficients of Rb and Sr, and 5. distinctly higher fluid−melt partitioning data obtained from in-situ experiments than from comparable quench runs, particularly in the case of H2O as starting solution. The data point to a preference of all studied trace elements for the melt even at fairly high salinities, which contrasts with other experimental studies, but is supported by data from studies of natural co-genetically trapped fluid and melt inclusions. The in-situ measurements of trace element concentrations in the fluid verify that aqueous fluids will change their composition upon cooling, which is in particular important for Cl free systems. The distinct differences of the in-situ results to quench data of this study as well as to data from the literature signify the im- portance of a careful fluid sampling and analysis. Therefore, the direct measurement of trace element contents in fluids equilibrated with silicate melts at elevated PT conditions represents an important development to obtain more reliable fluid−melt partition coefficients. For further improvement, both the aqueous fluid and the silicate melt need to be analyzed in-situ because partitioning data that are based on the direct measurement of the trace element content in the fluid and analysis of a quenched melt are still not completely free of quench effects. At present, all available data on element complexation in aqueous fluids in equilibrium with silicate melts at high PT are indirectly derived from partitioning data, which involves in these experiments assumptions on the species present in the fluid. However, the activities of chemical components in these partitioning experiments are not well constrained, which is required for the definition of exchange equilibria between melt and fluid species. For example, the melt-dependent variation of partition coefficient observed for Sr imply that this element can not only be complexed by Cl− as suggested previously. The data indicate a more complicated complexation of Sr in the aqueous fluid. To verify this hypothesis, the in-situ setup was also used to determine strontium complexation in fluids equilibrated with silicate melts at desired PT conditions by the application of X-ray absorption near edge structure (XANES) spectroscopy. First results show a strong effect of both fluid and melt composition on the resulting XANES spectra, which indicates different complexation environments for Sr. / Die Entstehung und Entwicklung von Graniten steht seit Jahrzehnten im Fokus vieler geologischer Studien, da sich die Erdkruste zu großen Teilen aus granitoiden Gesteinen zusammensetzt. Von besonderer Bedeutung für die Bildung von granitischen Schmelzen ist neben der Temperatur, der Wassergehalt der Schmelze, da dieser Parameter die chemische Zusammensetzung der Schmelze entscheidend verändern kann. Die Entmischung wässriger Fluide aus Schmelzen führt zur Neuverteilung von Elementen zwischen diesen Phasen. Bedingt durch die geringere Dichte des wässrigen Fluids im Vergleich zur Schmelze und dem Nebengestein, beginnt dieses aus tieferen Erdschichten aufzusteigen. Damit verknüpft ist nicht nur eine räumliche Trennung von Schmelze und Fluid, sondern auch die Alterierung des Nebengestein. Dieser Prozess ist insbesondere bei der Bildung von magmatisch-hydrothermalen Lagerstätten und in späten Entwicklungsstadien magmatischer Komplexe wichtig. Für ein detailliertes Verständnis dieser Prozesse ist es notwendig, das Elementverhalten in solchen Systemen in Abhängigkeit von Parametern wie Temperatur, Druck und chemischer Zusammensetzung des Systems experimentell zu untersuchen, und Elementverteilungskoeffizienten als Funktion dieser Variablen zu bestimmen. Für die Untersuchungen sind insbesondere Spurenelemente geeignet, da diese im Gegensatz zu Hauptelementen nicht essentiell für die Stabilität weiterer auftretender Phasen sind, aber sehr sensibel auf Änderungen intensiver Variablen reagieren können. Zudem werden bei geochemischen Mineral- und Gesteinsanalysen viele Spurenelemente, Spurenelementverhältnisse, und Spurenelementisotope als petrogenetische Indikatoren verwendet, d.h. diese Daten liefern Informationen darüber, wann und in welcher Tiefe und bei welchen chemischen Bedingungen ein Gestein gebildet worden ist, und welche weiteren Prozesse es auf dem Weg zur Erdoberfläche durchlaufen hat. Allerdings sind für vie- le Spurenelemente die Abhängigkeiten der Verteilung zwischen Fluiden und Schmelzen von intensiven Variablen nicht, oder nur unzureichend experimentell untersucht worden. Zusätzlich dazu basiert die Mehrheit der experimentell gewonnenen Verteilungskoeffizienten und deren Interpretation, insbesondere hinsichtlich der Elementkomplexierung im Fluid, auf der Analyse von schnell abgekühlten Phasen. Bisher ist nicht geklärt, ob solche Analysen repräsentativ sind für die Zusammensetzungen der Phasen bei hohen Drücken und Temperaturen. Das Ziel dieser Studie war die Erarbeitung eines experimentellen Datensatzes zur Spu- renelementverteilung zwischen granitischen Schmelzen und wässrigen Fluiden in Abhängigkeit von der Schmelzzusammensetzung, der Salinität des Fluids, des Drucks und der Temperatur. Ein Hauptanliegen der Arbeit bestand in der Weiterentwicklung einer experimentellen Methode bei welcher der Spurenelementgehalt im Fluid in-situ, d.h. unter hohen Drücken und Temperaturen, und im Gleichgewicht mit einer silikatischen Schmelze bestimmt wird. Die so gewonnenen Daten können anschließend mit den Resultaten von Abkühlexperimenten vergli- chen werden, um diese und auch Literaturdaten kritisch zu bewerten. Die Daten aller unter- suchten Spurenelemente dieser Arbeit (Rb, Sr, Ba, La, Y und Yb) zeigen: 1. unter den untersuchten Bedingungen eine Präferenz für die Schmelze unabhängig von der chemischen Zusammensetzung von Schmelze und Fluid, Druck oder Temperatur, 2. die Verwendung von chloridhaltigen Fluiden kann die Verteilungskoeffizienten um 1 bis 2 Größenordnungen anheben und 3. für die Verteilungskoeffizienten von Sr, Ba, La, Y und Yb eine starke Abhängigkeit von der Schmelzzusammensetzung im chloridischen System. Der Vergleich der Daten der verschiedenen Methoden zeigt, dass insbesondere für chloridfreie Fluide große Diskrepanzen zwischen den in-situ Daten und Analysen von abgeschreckten Proben bestehen. Dieses Ergebnis beweist eindeutig, dass beim Abschrecken der Proben Rückreaktionen stattfinden, und dass Daten, welche auf Analysen abgeschreckter Fluide basieren, nur eingeschränkt verwendet werden sollten. Die Variation der Verteilungskoeffizienten von Sr, Ba, La, Yb, und Y als Funktion der Schmelzzusammensetzung ist entweder auf eine Änderung der Komplexierung im Fluid und/oder einen anderen veränderten Einbau dieser Elemente in die Schmelze zurückzuführen. Daher wurde im Rahmen dieser Arbeit erstmals versucht, die Elementkomplexierung in silikatischen Fluiden direkt bei hohen Temperaturen und Drücken zu bestimmen. Die Daten für Sr zeigen, dass abhängig von der Schmelzzusammensetzung unterschiedliche Komplexe stabil sein müssen.
3

The Effect of Volatiles (H2O, Cl and CO2) on the Solubility and Partitioning of Platinum and Iridium in Fluid-Melt Systems

Blaine, Fredrick Allan January 2010 (has links)
Volatiles are a fundamental component of the Magmatic-Hydrothermal model of platinum group element (PGE) ore deposition for PGE deposits in layered mafic intrusions such as Bushveld and Stillwater. Volatiles have the potential to complex with PGEs in silicate melts and hydrothermal fluids, increasing PGE solubility; in order to assess the models of PGE ore deposition reliable estimates on the solubilities in the various magmatic phases must be known. However, experimental studies on the solubility and partitioning behaviour of PGEs in mafic magmatic-hydrothermal systems under relevant conditions are sparse, and the data that do exist produce conflicting results and new or adapted experimental methods must be applied to investigate these systems. Experimental results are presented here, investigating the effect of volatiles (i.e. H2O, Cl and CO2) on Pt and Ir solubility in a haplobasaltic melt and fluid-melt partitioning of Pt between an aqueous fluid and a haplobasaltic melt under magmatic conditions using a sealed-capsule technique. Also included are the details of the development of a novel experimental technique to observe fluid-melt partitioning in mafic systems and application of the method to the fluid-melt partition of Pt. Solubility experiments were conducted to assess the effect of volatiles on Pt and Ir solubility in a haplobasaltic melt of dry diopside-anorthite eutectic composition at 1523K and 0.2GPa. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42-Di58) haplobasalt composition was sealed in a platinum or platinum-iridium alloy capsule and was allowed to equilibrate with the noble metal capsule and a source of volatiles (i.e. H2O, H2O-Cl or H2O-CO2) at experimental conditions. All experiments were run in an internally-heated pressure vessel equipped with a rapid quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). The resultant crystal- and bubble-free run product glasses were analyzed using a combination of laser ablation ICP-MS and bulk solution isotope-dilution ICP-MS to determine equilibrium solubilities of Pt and Ir and investigate the formation and contribution of micronuggets to overall bulk determined concentrations. In water-bearing experiments, it was determined that water content did not have an intrinsic effect on Pt or Ir solubility for water contents between 0.9 wt. % and 4.4 wt. % (saturation). Water content controlled the oxygen fugacity of the experiment and the resulting variations in oxygen fugacity, and the corresponding solubilities of Pt and Ir, indicate that over geologically relevant conditions both Pt and Ir are dissolved primarily in the 2+ valence state. Pt data suggest minor influence of Pt4+ at higher oxygen fugacities; however, there is no evidence of higher valence states for Ir. The ability of the sealed capsule technique to produce micronugget-free run product glasses in water-only experiments, allowed the solubility of Pt to be determined in hydrous haplobasalt at lower oxygen fugacities (and concentrations) then was previously observed. Pt and Ir solubility can be represented as a function of oxygen fugacity (bars) by the following equations: [Pt](ppb)= 1389(fO-sub-2)+7531(fO-sub-2)^(1/2) [Ir](ppb)=17140(fO-sub-2)^(1/2) In Cl-bearing experiments, experimental products from short run duration (<96hrs) experiments contained numerous micronuggets, preventing accurate determination of platinum and iridium solubility. Longer run duration experiments showed decreasing amounts of micronuggets, allowing accurate determination of solubility; results indicate that under the conditions studied chlorine has no discernable effect on Pt solubility in the silicate melt from 0.6 to 2.75 wt. % Cl (saturation). Over the same conditions, a systematic increase in Ir solubility is found with increasing Cl content; however, the observed increase is within the analytical variation/error and is therefore not conclusive. If there is an effect of Cl on PGE solubility the effect is minor resulting in increased Ir solubilities of 60% at chlorine saturation. However, the abundance of micronuggets in short run duration experiments, which decreases in abundance with time and increases with Cl-content, offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt and Ir under magmatic conditions. It is suggested that platinum and iridium dissolved within the Cl-bearing fluid are left behind as the fluid dissolves into the melt during the heating stages of the experiment, leaving small amounts of Pt and Ir along the former particle boundaries. With increasing run duration, the metal migrates back to the capsule walls decreasing the amount of micronuggets contained within the glass. Estimates based on this model, using mass-balance calculations on the excess amount of Pt and Ir in the run product glasses (i.e. above equilibrium solubility) in short duration experiments, indicate estimated Pt and Ir concentrations in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. Respective apparent (equilibrium has not been established) partition coefficients (D,fluid-melt) of 1x10^3 to 4x10^3 and 300-1100 were determined for Pt and Ir in Cl-bearing fluids; suggesting that Cl-bearing fluids can be highly efficient at enriching and transporting PGE in mafic magmatic-hydrothermal ore-forming systems. Platinum solubility was also determined as a function of CO2 content in a hydrous haplobasalt at controlled oxygen fugacity. Using the same sealed capsule techniques and melt composition as for H2O and Cl, a hydrous haplobasaltic melt was allowed to equilibrate with the platinum capsule and a CO2-source (CaCO3 or silver oxalate) at 1523 K and 0.2 GPa. Experiments were conducted with a water content of approximately 1 wt. %, fixing the log oxygen fugacity (bars) between -5.3 and -6.1 (log NNO = -6.95 @ 1573 K and 0.2 GPa). Carbon dioxide contents in the run product glasses ranged from 800-2500 ppm; and over these conditions, CO2 was found to have a negligible effect on Pt solubility in the silicate melt. Analogous to the Cl-bearing experiments, bulk concentrations of Pt in CO2-bearing experiments increased with increasing CO2 content due to micronugget formation. Apparent Pt concentrations in the H2O-CO2 fluid phase, prior to fluid dissolution, were calculated to be 1.6 to 42 ppm, resulting in apparent partition coefficients(D,fluid-melt) of 1.5 x 10^2 to 4.2 x 10^3, increasing with increasing mol CO2:H2O up to approximately 0.15, after which increasing CO2 content does not further increase partitioning. As well, a novel technique was developed and applied to assess the partitioning of Pt between an aqueous fluid and a hydrous diopside-anorthite melt under magmatic conditions. Building upon the sealed-capsule technique utilized for solubility studies, a method was developed by adding a seed crystal to the capsule along with a silicate melt and fluid. By generating conditions favourable to crystal growth, and growing the crystal from the fluid, it is possible to entrap fluid inclusions in the growing crystal, allowing direct sampling of the fluid phase at the conditions of the experiment. Using a diopside seed crystal with the diopside-anorthite eutectic melt, it was possible to control diopside crystallization by controlling the temperature, thus allowing control of the crystallization and fluid inclusion entrapment conditions. Subsequent laser ablation ICP-MS analysis of the fluid inclusions allowed fluid–melt partition coefficients of Pt to be determined. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42¬Di58) haplobasalt composition (with ppm levels of Ba, Cs, Sr and Rb added as internal standards), water and a diopside seed crystal were sealed in a platinum capsule and were allowed to equilibrate at experimental conditions. Water was added in amounts to maintain a free fluid phase throughout the experiment, and the diopside crystal was separated from the melt. All experiments were run in an internally heated pressure vessel equipped with a rapid-quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Experiments were allowed to equilibrate (6-48 hrs) at experimental conditions (i.e. 1498K, 0.2 GPa, fluid+melt+diopside stable) before temperature was dropped (i.e. to 1483K) to induce crystallization. Crystals were allowed to grow for a period of 18-61 hours, prior to rapid isobaric quenching to 293K at the conclusion of the experiment. Experimental run products were a crystal- and bubble-free glass and the diopside seed crystal with a fluid-inclusion-bearing overgrowth. Analysis of fluid inclusions provides initial solubility estimates of Pt in a H2O fluid phase at 1488 K and 0.2 GPa at or near ppm levels and fluid melt partition coefficients ranging from 2 – 48. This indicates substantial metal enrichment in the fluid phase in the absence of major ligands such as carbonate or chlorine. The results of this study indicate that the volatiles studied (i.e. H2O, CO2, and Cl) do not have a significant effect on Pt and Ir solubility in a haplobasaltic melt at magmatic conditions. These results suggest that complexing of Pt and Ir by OH, Cl, and carbonate species in a haplobasaltic melt is insignificant and the presence of these volatiles will not result in significantly increased PGE contents over their dry counterparts, as has been suggested. Preliminary evidence of minor Cl-complexing of Ir is presented; however, resulting in only a slight increase (<100%) in Ir solubility at Cl-saturation. Significant partitioning of Pt and Ir into a fluid phase at magmatic conditions has been demonstrated; with estimates of fluid-haplobasaltic melt partition coefficients increasing from 1x10^1 for pure water to up to an apparent 4x10^3 with the addition of Cl or CO2 to the system. This result indicates complexing of Pt and Ir with OH< HxCOy≤ Cl. Using these estimates, Cl- or CO2-bearing magmatic fluids can be highly efficient at enriching and transporting platinum group elements (PGEs) in mafic magmatic-hydrothermal ore-forming systems.
4

The Effect of Volatiles (H2O, Cl and CO2) on the Solubility and Partitioning of Platinum and Iridium in Fluid-Melt Systems

Blaine, Fredrick Allan January 2010 (has links)
Volatiles are a fundamental component of the Magmatic-Hydrothermal model of platinum group element (PGE) ore deposition for PGE deposits in layered mafic intrusions such as Bushveld and Stillwater. Volatiles have the potential to complex with PGEs in silicate melts and hydrothermal fluids, increasing PGE solubility; in order to assess the models of PGE ore deposition reliable estimates on the solubilities in the various magmatic phases must be known. However, experimental studies on the solubility and partitioning behaviour of PGEs in mafic magmatic-hydrothermal systems under relevant conditions are sparse, and the data that do exist produce conflicting results and new or adapted experimental methods must be applied to investigate these systems. Experimental results are presented here, investigating the effect of volatiles (i.e. H2O, Cl and CO2) on Pt and Ir solubility in a haplobasaltic melt and fluid-melt partitioning of Pt between an aqueous fluid and a haplobasaltic melt under magmatic conditions using a sealed-capsule technique. Also included are the details of the development of a novel experimental technique to observe fluid-melt partitioning in mafic systems and application of the method to the fluid-melt partition of Pt. Solubility experiments were conducted to assess the effect of volatiles on Pt and Ir solubility in a haplobasaltic melt of dry diopside-anorthite eutectic composition at 1523K and 0.2GPa. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42-Di58) haplobasalt composition was sealed in a platinum or platinum-iridium alloy capsule and was allowed to equilibrate with the noble metal capsule and a source of volatiles (i.e. H2O, H2O-Cl or H2O-CO2) at experimental conditions. All experiments were run in an internally-heated pressure vessel equipped with a rapid quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). The resultant crystal- and bubble-free run product glasses were analyzed using a combination of laser ablation ICP-MS and bulk solution isotope-dilution ICP-MS to determine equilibrium solubilities of Pt and Ir and investigate the formation and contribution of micronuggets to overall bulk determined concentrations. In water-bearing experiments, it was determined that water content did not have an intrinsic effect on Pt or Ir solubility for water contents between 0.9 wt. % and 4.4 wt. % (saturation). Water content controlled the oxygen fugacity of the experiment and the resulting variations in oxygen fugacity, and the corresponding solubilities of Pt and Ir, indicate that over geologically relevant conditions both Pt and Ir are dissolved primarily in the 2+ valence state. Pt data suggest minor influence of Pt4+ at higher oxygen fugacities; however, there is no evidence of higher valence states for Ir. The ability of the sealed capsule technique to produce micronugget-free run product glasses in water-only experiments, allowed the solubility of Pt to be determined in hydrous haplobasalt at lower oxygen fugacities (and concentrations) then was previously observed. Pt and Ir solubility can be represented as a function of oxygen fugacity (bars) by the following equations: [Pt](ppb)= 1389(fO-sub-2)+7531(fO-sub-2)^(1/2) [Ir](ppb)=17140(fO-sub-2)^(1/2) In Cl-bearing experiments, experimental products from short run duration (<96hrs) experiments contained numerous micronuggets, preventing accurate determination of platinum and iridium solubility. Longer run duration experiments showed decreasing amounts of micronuggets, allowing accurate determination of solubility; results indicate that under the conditions studied chlorine has no discernable effect on Pt solubility in the silicate melt from 0.6 to 2.75 wt. % Cl (saturation). Over the same conditions, a systematic increase in Ir solubility is found with increasing Cl content; however, the observed increase is within the analytical variation/error and is therefore not conclusive. If there is an effect of Cl on PGE solubility the effect is minor resulting in increased Ir solubilities of 60% at chlorine saturation. However, the abundance of micronuggets in short run duration experiments, which decreases in abundance with time and increases with Cl-content, offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt and Ir under magmatic conditions. It is suggested that platinum and iridium dissolved within the Cl-bearing fluid are left behind as the fluid dissolves into the melt during the heating stages of the experiment, leaving small amounts of Pt and Ir along the former particle boundaries. With increasing run duration, the metal migrates back to the capsule walls decreasing the amount of micronuggets contained within the glass. Estimates based on this model, using mass-balance calculations on the excess amount of Pt and Ir in the run product glasses (i.e. above equilibrium solubility) in short duration experiments, indicate estimated Pt and Ir concentrations in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. Respective apparent (equilibrium has not been established) partition coefficients (D,fluid-melt) of 1x10^3 to 4x10^3 and 300-1100 were determined for Pt and Ir in Cl-bearing fluids; suggesting that Cl-bearing fluids can be highly efficient at enriching and transporting PGE in mafic magmatic-hydrothermal ore-forming systems. Platinum solubility was also determined as a function of CO2 content in a hydrous haplobasalt at controlled oxygen fugacity. Using the same sealed capsule techniques and melt composition as for H2O and Cl, a hydrous haplobasaltic melt was allowed to equilibrate with the platinum capsule and a CO2-source (CaCO3 or silver oxalate) at 1523 K and 0.2 GPa. Experiments were conducted with a water content of approximately 1 wt. %, fixing the log oxygen fugacity (bars) between -5.3 and -6.1 (log NNO = -6.95 @ 1573 K and 0.2 GPa). Carbon dioxide contents in the run product glasses ranged from 800-2500 ppm; and over these conditions, CO2 was found to have a negligible effect on Pt solubility in the silicate melt. Analogous to the Cl-bearing experiments, bulk concentrations of Pt in CO2-bearing experiments increased with increasing CO2 content due to micronugget formation. Apparent Pt concentrations in the H2O-CO2 fluid phase, prior to fluid dissolution, were calculated to be 1.6 to 42 ppm, resulting in apparent partition coefficients(D,fluid-melt) of 1.5 x 10^2 to 4.2 x 10^3, increasing with increasing mol CO2:H2O up to approximately 0.15, after which increasing CO2 content does not further increase partitioning. As well, a novel technique was developed and applied to assess the partitioning of Pt between an aqueous fluid and a hydrous diopside-anorthite melt under magmatic conditions. Building upon the sealed-capsule technique utilized for solubility studies, a method was developed by adding a seed crystal to the capsule along with a silicate melt and fluid. By generating conditions favourable to crystal growth, and growing the crystal from the fluid, it is possible to entrap fluid inclusions in the growing crystal, allowing direct sampling of the fluid phase at the conditions of the experiment. Using a diopside seed crystal with the diopside-anorthite eutectic melt, it was possible to control diopside crystallization by controlling the temperature, thus allowing control of the crystallization and fluid inclusion entrapment conditions. Subsequent laser ablation ICP-MS analysis of the fluid inclusions allowed fluid–melt partition coefficients of Pt to be determined. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42¬Di58) haplobasalt composition (with ppm levels of Ba, Cs, Sr and Rb added as internal standards), water and a diopside seed crystal were sealed in a platinum capsule and were allowed to equilibrate at experimental conditions. Water was added in amounts to maintain a free fluid phase throughout the experiment, and the diopside crystal was separated from the melt. All experiments were run in an internally heated pressure vessel equipped with a rapid-quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Experiments were allowed to equilibrate (6-48 hrs) at experimental conditions (i.e. 1498K, 0.2 GPa, fluid+melt+diopside stable) before temperature was dropped (i.e. to 1483K) to induce crystallization. Crystals were allowed to grow for a period of 18-61 hours, prior to rapid isobaric quenching to 293K at the conclusion of the experiment. Experimental run products were a crystal- and bubble-free glass and the diopside seed crystal with a fluid-inclusion-bearing overgrowth. Analysis of fluid inclusions provides initial solubility estimates of Pt in a H2O fluid phase at 1488 K and 0.2 GPa at or near ppm levels and fluid melt partition coefficients ranging from 2 – 48. This indicates substantial metal enrichment in the fluid phase in the absence of major ligands such as carbonate or chlorine. The results of this study indicate that the volatiles studied (i.e. H2O, CO2, and Cl) do not have a significant effect on Pt and Ir solubility in a haplobasaltic melt at magmatic conditions. These results suggest that complexing of Pt and Ir by OH, Cl, and carbonate species in a haplobasaltic melt is insignificant and the presence of these volatiles will not result in significantly increased PGE contents over their dry counterparts, as has been suggested. Preliminary evidence of minor Cl-complexing of Ir is presented; however, resulting in only a slight increase (<100%) in Ir solubility at Cl-saturation. Significant partitioning of Pt and Ir into a fluid phase at magmatic conditions has been demonstrated; with estimates of fluid-haplobasaltic melt partition coefficients increasing from 1x10^1 for pure water to up to an apparent 4x10^3 with the addition of Cl or CO2 to the system. This result indicates complexing of Pt and Ir with OH< HxCOy≤ Cl. Using these estimates, Cl- or CO2-bearing magmatic fluids can be highly efficient at enriching and transporting platinum group elements (PGEs) in mafic magmatic-hydrothermal ore-forming systems.

Page generated in 0.0201 seconds