• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 65
  • 61
  • 14
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 415
  • 106
  • 98
  • 88
  • 85
  • 83
  • 65
  • 64
  • 62
  • 58
  • 56
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Tsunami loading on light-frame wood structures

Linton, David B. 20 March 2012 (has links)
Since 2004 there have been multiple devastating tsunamis around the globe triggered by large magnitude earthquakes; with the most recent being the Tohoku, Japan tsunami in March 2011. These tsunamis have caused significant loss of life and damage to the coastal communities impacted by these powerful waves. The resulting devastation has raised awareness of the dangers of tsunamis and the Network for Earthquake Engineering Simulation (NEES) housesmash project (NEEShousesmash), was started to investigate several different areas of tsunami inundation. The work presented in the following two manuscripts was performed at the O.H. Hinsdale Wave Lab and Gene D. Knudson Wood Engineering Lab, which are located at Oregon State University. This work represents a small portion of the total NEEShousesmash project, and is focused on improving the knowledge and predictability of tsunami loading and structural performance. The first manuscript investigates tsunami wave impact on full scale light-frame wood walls, and compares the measured forces to calculated values using the linear momentum equation, previously evaluated by Cross (1967). The results show for each wave height tested a peak transient force followed by a sustained quasi-static force, with a ratio of transient force to quasi-static force of 2.2. The results also show that the linear momentum equation did an acceptable job of predicting the measured transient forces on the walls to within ±10%, and that increased wall flexibility, 2x4 vs. 2x6 dimensional lumber, resulted in lower measured transient forces when subjected to similar tsunami wave heights. These results are important for practical use because the linear momentum equation is a simple equation to use, that only requires a couple of site specific input variables. The second manuscript is a continuation of the work done in the wave lab for the first manuscript. These experiments provide a starting point for expanding the testing of the structural response and performance of larger scale structures subjected to tsunami wave loads. By simulating tsunami loading in a traditional structures laboratory, the inherent limits of testing structural performance in small scale tsunami laboratory facilities is removed. The results show that a light-frame wood shear wall, built to current standards, is susceptible to premature failures from concentrated impact loads at intermediate heights compared to the design strength at full height. It is also shown that the out-of-plane walls subjected to both elastic and inelastic loads behave like a one way slab with minimal load sharing between adjacent studs. The failures observed during the hydrodynamic wave testing of the nailed connection between the bottom plate and studs was successfully reproduced, and shows that current construction standards are not fully utilizing the available capacity of each stud when subjected to tsunami waves. The reinforcement of this connection with traditional metal brackets would help increase the capacity of the out-of-plane wall to resist tsunami wave loads. / Graduation date: 2012
262

Adaptive and Dynamic Meshing Methods for Numerical Simulations

Acikgoz, Nazmiye 05 March 2007 (has links)
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool. This is important especially for problems characterized by anisotropic features and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in unsteady simulations with moving boundaries, where the boundary motion has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions. To solve these problems, we propose three novel procedures. In the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. We propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging unsteady multi-physics problems are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, degenerate elements are easily formed in the grid such that frequent remeshing is required. We propose a new r-adaptation technique that is valid for all types of elements (e.g., triangle, tet, quad, hex, hybrid) and deforms grids that undergo large imposed displacements at their boundaries. A grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. Both frequent remeshing, and exact-pinpointing of clustering locations are great challenges of numerical simulations, which can be overcome by adaptive meshing algorithms. Therefore, we conclude this work by defining a novel mesh adaptation technique where the entire mesh is adapted upon application of a force field in order to comply with the target mesh or to get more accurate solutions. The method has been tested for two-dimensional problems of a-priori metric definitions as well as for oblique shock clusterings.
263

Simulation of Hydrodynamic Fragmentation from a Fundamental and an Engineering Perspective

Patel, Nayan V. 26 June 2007 (has links)
Liquid fragmentation phenomenon is explored from both a fundamental (fully resolved) and an engineering (modeled) perspective. The dual objectives compliment each other by providing an avenue to gain further understanding into fundamental processes of atomization as well as to use the newly acquired knowledge to address practical concerns. A compressible five-equation interface model based on a Roe-type scheme for the simulation of material boundaries between immiscible fluids with arbitrary equation of state is developed and validated. The detailed simulation model accounts for surface-tension, viscous, and body-force effects, in addition to acoustic and convective transport. The material interfaces are considered as diffused zones and a mixture model is given for this transition region. The simulation methodology combines a high-resolution discontinuity capturing method with a low-dissipation central scheme resulting in a hybrid approach for the solution of time- and space-accurate interface problems. Several multi-dimensional test cases are considered over a wide range of physical situations involving capillary, viscosity, and gravity effects with simultaneous presence of large viscosity and density ratios. The model is shown to accurately capture interface dynamics as well as to deal with dynamic appearance and disappearance of material boundaries. Simulation of atomization processes and its interaction with the flow field in practical devices is the secondary objective of this study. Three modeling requirements are identified to perform Large-Eddy Simulation (LES) of spray combustion in engineering devices. In concurrence with these requirements, LES of an experimental liquid-fueled Lean Direct Injection (LDI) combustor is performed using a subgrid mixing and combustion model. This approach has no adjustable parameters and the entire flow-path through the inlet swirl vanes is resolved. The inclusion of the atomization aspects within LES eliminates the need to specify dispersed-phase size-velocity correlations at the inflow boundary. Kelvin-Helmholtz (or aerodynamic) breakup model by Reitz is adopted for the combustor simulation. Two simulations (with and without breakup) are performed and compared with measurements of Cai et al. Time-averaged velocity prediction comparison for both gas- and liquid-phase with available data show reasonable agreement. The major impact of breakup is on the fuel evaporation in the vicinity of the injector. Further downstream, a wide range of drop sizes are recovered by the breakup simulation and produces similar spray quality as in the no-breakup case.
264

Static Aeroelastic Analysis Of A Generic Slender Missile Using A Loosely Coupled Fluid Structure Interaction Method

Akgul, Mehmet 01 February 2012 (has links) (PDF)
In this thesis, a loosely coupled Fluid-Structure Interaction (FSI) analysis method is developed for the solution of steady state missile/rocket aeroelastic problems. FLUENT is used as the Computational Fluid Dynamics (CFD) tool to solve Euler equations whereas ANSYS is used as the Computational Structural Dynamics (CSD) tool to solve linear structural problem. The use of two different solvers requires exchanging data between fluid and structure domains at each iteration step. Kriging interpolation method is employed for the data transfer between non-coincident fluid and structure grids. For mesh deformation FLUENT&rsquo / s built-in spring based smoothing approach is utilized. The study is mainly divided into two parts. In the first part static aeroelastic analysis for AGARD 445.6 wing is conducted and the results are compared with the reference studies. Deformation and pressure coefficient results are compared with reference both of which are in good agreement. In the second part, to investigate possible effects of aeroelasticity on rocket and missile configurations, static aeroelastic analysis for a canard controlled generic slender missile which is similar to a conventional 2.75&rdquo / rocket geometry is conducted and results of the analysis for elastic missile are compared with the rigid case. It is seen that the lift force produced by canards and tails lessen due to deformations, stability characteristics of the missile decreases significantly and center of pressure location changes due to the deformations in the control surfaces.
265

Direct numerical simulation and analysis of saturated deformable porous media

Khan, Irfan 07 July 2010 (has links)
Existing numerical techniques for modeling saturated deformable porous media are based on homogenization techniques and thus are incapable of performing micro-mechanical investigations, such as the effect of micro-structure on the deformational characteristics of the media. In this research work, a numerical scheme is developed based on the parallelized hybrid lattice-Boltzmann finite-element method, that is capable of performing micro-mechanical investigations through direct numerical simulations. The method has been used to simulate compression of model saturated porous media made of spheres and cylinders in regular arrangements. Through these simulations it is found that in the limit of small Reynolds number, Capillary number and strain, the deformational behaviour of a real porous media can be recovered through model porous media when the parameters porosity, permeability and bulk compressive modulus are matched between the two media. This finding motivated research in using model porous geometries to represent more complex real porous geometries in order to perform investigations of deformation on the latter. An attempt has been made to apply this technique to the complex geometries of ªfeltº, (a fibrous mat used in paper industries). These investigations lead to new understanding on the effect of fiber diameter on the bulk properties of a fibrous media and subsequently on the deformational behaviour of the media. Further the method has been used to investigate the constitutive relationships in deformable porous media. Particularly the relationship between permeability and porosity during the deformation of the media is investigated. Results show the need of geometry specific investigations.
266

Prediction of random vibration using spectral methods

Birgersson, Fredrik January 2003 (has links)
<p>Much of the vibration in fast moving vehicles is caused bydistributed random excitation, such as turbulent flow and roadroughness. Piping systems transporting fast flowing fluid isanother example, where distributed random excitation will causeunwanted vibration. In order to reduce these vibrations andalso the noise they cause, it is important to have accurate andcomputationally efficient prediction methods available.</p><p>The aim of this thesis is to present such a method. Thefirst step towards this end was to extend an existing spectralfinite element method (SFEM) to handle excitation of planetravelling pressure waves. Once the elementary response tothese waves is known, the response to arbitrary homogeneousrandom excitation can be found.</p><p>One example of random excitation is turbulent boundary layer(TBL) excitation. From measurements a new modified Chase modelwas developed that allowed for a satisfactory prediction ofboth the measured wall pressure field and the vibrationresponse of a turbulence excited plate. In order to model morecomplicated structures, a new spectral super element method(SSEM) was formulated. It is based on a waveguide formulation,handles all kinds of boundaries and its elements are easily putinto an assembly with conventional finite elements.</p><p>Finally, the work to model fluid-structure interaction withanother wave based method is presented. Similar to the previousmethods it seems to be computationally more efficient thanconventional finite elements.</p>
267

Efficient finite element approach for structural-acoustic applicationns including 3D modelling of sound absorbing porous materials

Rumpler, Romain 13 March 2012 (has links) (PDF)
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
268

Mehrfeldmodellierung und Simulation der äußeren Haarsinneszelle der Cochlea

Fleischer, Mario 11 December 2012 (has links) (PDF)
Das Innenohr des Säugetieres ist ein hochspezialisiertes sensorisches System, das durch ein komplexes mechanisches Verhalten gekennzeichnet ist. Neben der komplizierten Morphometrie und Geometrie kommen auch dem richtungsabhängigen Materialverhalten eine wesentliche Bedeutung zu. Es zeigt sich, daß im Cortischen Organ mit der äußeren Haarsinneszelle ein Zelltyp vorliegt, der durch seine physikalischen Eigenschaften das Gesamtverhalten des Innenohres maßgeblich beeinflußt. Wie jede tierische Zelle weist die äußere Haarsinneszelle als biomechanisches System eine heterogene Mikrostruktur auf. Vom mechanischen Standpunkt aus gesehen, ist neben der mehrschichtigen basolateralen Zellwand jede Einzelzelle durch ein viskoses inneres Fluid (Zellplasma) und einen Zellkern (Nukleus) gekennzeichnet. Die resultierenden mechanischen Eigenschaften des Gesamtsystems ”äußere Haarsinneszelle” können durch Experimente und eine geeignete Modellierung determiniert werden. In dieser Arbeit wird ein neuer Ansatz zur Bestimmung der viskoelastischen Materialeigenschaften der basolateralen Wand vorgestellt. Durch Anwendung einer effektiven Fluid-Struktur-Interaktion wird das Gesamtsystem geschlossen untersucht und eine umfangreiche Materialparameterstudie durchgeführt. Dabei werden im Rahmen der Kontinuumsmechanik gültige Materialgesetze angewendet. Das durch partielle Differentialgleichungen formulierte mechanische Feldproblem wird im Rahmen der Finiten-Elemente-Methode approximiert, was zu einem linearen Gleichungssystem führt. Auf dieser Grundlage wird ein Finite-Elemente-Modell der äußeren Haarsinneszelle entwickelt. Die zur Beschreibung notwendigen Systemmatrizen – insbesondere die Dämpfungsmatrix – basieren dabei vollständig auf einem viskoelastischen Materialgesetz. Die benutzte Methodik läßt weiterhin eine effiziente Berechnung im Frequenzbereich zu. Es zeigt sich, daß eine spezielle Dämpfungsformulierung die experimentell bestimmten dynamischen Eigenschaften der Zelle adäquat widerspiegelt. Eine Analyse auf Materialgesetzebene zeigt, daß dafür reine Schubdämpfung und damit eine spezielle Anisotropie im Viskositätstensor verantwortlich ist. Diese Eigenschaft bestimmt das dynamische Verhalten der äußeren Haarsinneszelle bis mindestens 10 kHz und liegt damit im Hörbereich. Der Modellierung der Zelle geht eine angepaßte Auswertung der experimentell ermittelten Daten voraus. Die mechanisch geeignete Auswertung der zugrundeliegenden Experimente weist dabei auf mögliche Fehlerquellen bei der Analyse der Rohdaten hin. Das hat zur Konsequenz, daß der experimentellen Umgebung die gleiche Aufmerksamkeit geschenkt werden muß wie dem Meßobjekt selbst. Nur so kann eine geeignete Extraktion der für das Meßobjekt spezifischen Eigenschaften erfolgen.
269

Μοντελοποίηση και έλεγχος ρευστοδυναμικών συστημάτων με χρήση έξυπνων υλικών

Κωβαίος, Ιωάννης 11 August 2011 (has links)
Η παρούσα διδακτορική διατριβή έχει ως στόχο την ανάλυση και έλεγχο ρευστοδυναμικών συστημάτων χρησιμοποιώντας έξυπνα υλικά όπως πιεζοκρύσταλλοι για τον σχεδιασμό επενεργητών. Στο Μέρος Ι, εκτιμάται η απόδοση μιας πρωτότυπης πιεζο-υδραυλικής αντλίας με χρήση Πεπερασμένων Στοιχείων. Η συγκεκριμένη διάταξη αποτελείται από ένα έμβολο και δύο παθητικές βαλβίδες με συχνότητα λειτουργίας μεγαλύτερη των 100Hz. Το αναπτυχθέν μοντέλο πεπερασμένων στοιχείων λαμβάνει υπόψιν την συμπιεστότητα του ρευστού, την περιορισμένη διάδοση του κύματος πίεσης, τυρβώδη ροή και αμφίδρομη αλληλεπίδραση ρευστού-στερεού των βαλβίδων. Με τα αποτελέσματα των προσομοιώσεων υπολογίστηκε η απόδοση της αντλίας και ακολούθησε παραμετρική βελτιστοποίηση κύριων παραμέτρων της βαλβίδας. Έτσι, έγινε εφικτή η λειτουργία σε υψηλότερες συχνότητες (500Hz) με βελτιωμένη απόδοση. Στην συνέχεια, μελετήθηκε ιδεατό σύστημα με ενεργές βαλβίδες ώστε να αναπτυχθούν τεχνικές ελέγχου του χρονισμού των βαλβίδων. Οι προσομοιώσεις έδειξαν σημαντικά περιθώρια βελτίωσης με ενεργές βαλβίδες, ενώ ανέδειξαν την σημασία της διάδοσης του κύματος, ιδιαίτερα κατά τον συντονισμό. Στο Μέρος ΙΙ, προτάθηκε ένας πρωτότυπος επενεργητής, βασισμένος στην εκμετάλλευση του συντονισμού του ρευστού. Αυτή η προσέγγιση επιτρέπει την μηχανική ολοκλήρωση της αντλίας μέσα στον επενεργητή, ενώ απαιτείται μόνο μια βαλβίδα υψηλής συχνότητας σε αντίθεση με υπάρχοντα συστήματα όπου απαιτούνται δύο (εισαγωγής, εξαγωγής). Ο πρωτότυπος επενεργητής μοντελοποιήθηκε με απευθείας διακριτοποίηση των εξισώσεων Navier Stokes με συμπιεστότητα και εξήχθη ένα μοντέλο χώρου κατάστασης. Παράλληλα με το μοντέλο πιεζοκρυστάλλων και της ροής της βαλβίδας ολοκληρώθηκε το μοντέλο του επενεργητή, ενώ τα βασικά στοιχεία του μοντέλου επιβεβαιώθηκαν με πειραματικά δεδομένα. Επίσης επιβεβαιώθηκε η αρχή λειτουργίας του προτεινόμενου συστήματος του επενεργητή με πειραματικές μετρήσεις. Στην τελευταία ενότητα της διατριβής αναλύονται βασικά στοιχεία με στόχο την βελτίωση της λειτουργίας του επενεργητή. / The present PhD thesis has a key object the analysis and control of fluid dynamics systems taking advantage of the smart material properties like piezocrystals for the design of actuators. In Part I, the performance of a prototype piezohydraulic pump is estimated using the Finite Element Method. The specific setup consists of a piston and two passive valves with an operating frequency greater than 100Hz. The developed Finite Element Model takes into account fluid's compressibility, the limited pressure wave propagation, turbulent flow and Fluid Structure Interaction of the valves with the fluid. Simulation results were used to calculate the pump's performance and a parametric optimization of valve's key parameters is performed. Much higher operating frequencies (500Hz) with improved performance is achieved. In the sequel, studies on a ideal active valve system are undertaken and control techniques of valve timing are developed. Simulations revealed the potential benefit from an active valve system and also revealed the importance of accounting wave propagation phenomena, especially during resonance. In Part II, a novel fluid actuator based on the exploitation of fluid resonance is proposed. This approach allows the integration of the pump within the actuator, whereas only one high frequency valve is needed, in contrast with existing systems where two high frequency valves are needed (inlet, outlet). The novel actuator is modeled using a direct discretization of the compressible Navier Stokes equations and a state space model is derived. Along with the piezoelectric and valve flow model a complete model of the actuator is formulated. The key components of the model are verified with experimental data from a prototype actuator. Also, the concept of the new actuator is proved by experimental measurements. At the last section of the thesis key aspects of the systems for further improvement of the actuator are proposed.
270

Eulerian and Lagrangian smoothed particle hydrodynamics as models for the interaction of fluids and flexible structures in biomedical flows

Nasar, Abouzied January 2016 (has links)
Fluid-structure interaction (FSI), occurrent in many areas of engineering and in the natural world, has been the subject of much research using a wide range of modelling strategies. However, problems with high levels of structural deformation are difficult to resolve and this is particularly the case for biomedical flows. A Lagrangian flow model coupled with a robust model for nonlinear structural mechanics seems a natural candidate since large distortion of the computational geometry is expected. Smoothed particle Hydrodynamics (SPH) has been widely applied for nonlinear interface modelling and this approach is investigated here. Biomedical applications often involve thin flexible structures and a consistent approach for modelling the interaction of fluids with such structures is also required. The Lagrangian weakly compressible SPH method is investigated in its recent delta-SPH form utilising inter-particle density fluxes to improve stability. Particle shifting is also used to maintain particle distributions sufficiently close to uniform to enable stable computation. The use of artificial viscosity is avoided since it introduces unphysical dissipation. First, solid boundary conditions are studied using a channel flow test. Results show that when the particle distribution is allowed to evolve naturally instabilities are observed and deviations are noted from the expected order of accuracy. A parallel development in the SPH group at Manchester has considered SPH in Eulerian form (for different applications). The Eulerian form is applied to the channel flow test resulting in improved accuracy and stability due to the maintenance of a uniform particle distribution. A higher-order accurate boundary model is developed and applied for the Eulerian SPH tests and third-order convergence is achieved. The well documented case of flow past a thin plate is then considered. The immersed boundary method (IBM) is now a natural candidate for the solid boundary. Again, it quickly becomes apparent that the Lagrangian SPH form has limitations in terms of numerical noise arising from anisotropic particle distributions. This corrupts the predicted flow structures for moderate Reynolds numbers (O(102)). Eulerian weakly compressible SPH is applied to the problem with the IBM and is found to give accurate and convergent results without any numerical stability problems (given the time step limitation defined by the Courant condition). Modelling highly flexible structures using the discrete element model is investigated where granular structures are represented as bonded particles. A novel vector-based form (the V-Model) is identified as an attractive approach and developed further for application to solid structures. This is shown to give accurate results for quasi-static and dynamic structural deformation tests. The V-model is applied to the decay of structural vibration in a still fluid modelled using Eulerian SPH with no artificial stabilising techniques. Again, results are in good agreement with predictions of other numerical models. A more demanding case representative of pulsatile flow through a deep leg vein valve is also modelled using the same form of Eulerian SPH. The results are free of numerical noise and complex FSI features are captured such as vortex shedding and non-linear structural deflection. Reasonable agreement is achieved with direct in-vivo observations despite the simplified two-dimensional numerical geometry. A robust, accurate and convergent method has thus been developed, at present for laminar two-dimensional low Reynolds number flows but this may be generalised. In summary a novel robust and convergent FSI model has been established based on Eulerian SPH coupled to the V-Model for large structural deformation. While these developments are in two dimensions the method is readily extendible to three-dimensional, laminar and turbulent flows for a wide range of applications in engineering and the natural world.

Page generated in 0.562 seconds