• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 623
  • 248
  • 231
  • 105
  • 66
  • 29
  • 19
  • 13
  • 11
  • 10
  • 8
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1569
  • 385
  • 347
  • 296
  • 279
  • 260
  • 255
  • 255
  • 208
  • 194
  • 182
  • 148
  • 146
  • 145
  • 131
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Structure, thermodynamics and dynamics of confined and supercooled liquids

Mittal, Jeetain 28 August 2008 (has links)
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. In this dissertation, we explore the connections between self-diffusivity, density, available space, and excess entropy in two non-trivial problems in liquid state theory, confined and supercooled liquids. We present exact simulation data for the relationship between self-diffusivity and excess entropy for a wide range of simple of simple fluids (i.e. hard-sphere, Lennard-Jones and square-well) confined to pores with a variety of different sizes and fluid-wall interations. Our main finding is that, at a given temperature, self-diffusivity of the confined fluids collapses onto the bulk behavior when plotted versus excess entropy. In other words, the only information required to "predict" the implications of confinement for the single-particle dynamics is the bulk fluid behavior at a given temperature and the excess entropy of the confined fluid. This should prove practically useful given that the bulk behavior is well known for these fluid systems, and the excess entropy of the confined fluids can be readily estimated from classical density functional theory. We also show that the self-diffusivity of the confined fluids approximately collapses onto the data for the corresponding bulk fluid when plotted versus the average packing fraction (which is based on total, rather than center accessible volume). For continuous interaction potentials such as Lennard-Jones, calculation of effective packing fraction requires knowledge of both the number density of the fluid and a temperature-dependent Boltzmann diameter associated with the repulsive part of the interparticle interactions. We suggest a way to calculate this effective diameter, which to a very good approximation, collapse the temperature- and density-dependent data for the self-diffusivity of the bulk Lennard-Jones fluid onto hard-sphere fluid data plotted versus the fluid's effective packing fraction. Finally, we found that the self-diffusivities of several model systems in their supercooled state also scale exponentially not only with the excess entropy, but also with the two-body contribution to the excess entropy obtained from the pair correlation function of the fluid. The latter observation is particularly interesting because it provides direct evidence of a quantitative link between the dynamics and the average structural order of supercooled liquids. Whether such a connection could indeed be discovered is part of a long-standing question in the study of liquids. / text
242

The determination of solubility of liquids in supercritical fluids using dielectric constants

Wabula, Kazamwali Serge. January 2011 (has links)
M. Tech. Chemical Engineering. / The solubility of highly volatile non polar solutes (hexane, toluene and benzene) was determined in CO2, in the vicinity of supercritical conditions using a method employing dielectric constants. This method is based on the measurement of the dielectric constant of the saturated supercritical solution and that of the supercritical solvent as a function of pressure along different isotherms, by using the Clausius- Mossotti function. Results were in agreement with literature values, proving that this method can be used to determine the solubility of a solute in a pressurized gas. The results obtained demonstrate the capability of the dielectric constant method as a nonintrusive, simple and efficient means of determining accurately the solubility of liquids in supercritical solvents.
243

Proppant settling in viscoelastic surfactant (VES) fluids

Malhotra, Sahil 21 February 2011 (has links)
Polymer-free viscoelastic surfactant-based (VES) fluid systems have been used to eliminate polymer-based damage and to efficiently transport proppants into the fracture. Current models and correlations neglect the important influence of fracture walls and fluid elasticity on proppant settling. This report presents an experimental study that investigates the impact of fluid elasticity and fracture width on proppant settling in VES fluid systems. Proppant settling experiments are performed in shear-thinning VES fluids. Experimental data is presented to show that fluid elasticity plays an important role in controlling the settling rate of the proppants. It is shown that elastic effects can increase as well as reduce the settling velocities depending upon the rheological properties of the fluid and properties of the proppants. Data is presented to show that the settling velocity reduces significantly as the proppant size becomes comparable to the fracture width. The reduction in settling velocity due to the presence of the fracture walls depends on the rheological properties of the fluid, ratio of particle diameter to fracture width as well as the diameter of the particle. / text
244

A New Facility for Studying Shock Wave Passage over Dust Layers

Marks, Brandon 16 December 2013 (has links)
To ensure safety regarding dust explosion hazards, it is important to study the dust lifting process experimentally and identify important parameters that will be valuable for development and validation of numerical predictions of this phenomenon. A new shock tube test section was developed and integrated into an existing shock tube facility. The test section allows for shadowgraph or laser scattering techniques to track dust layer particle motion. The test section is designed to handle an initial pressure of 1 atm with an incident shock wave velocity up to Mach 2 to mimic real world conditions. The test section features an easily removable dust pan and inserts to allow for adjustment of dust layer thickness. The design allows for the changing of experimental variables including initial pressure, Mach number, dust layer thickness and characteristics of the dust itself. A separate vacuum manifold was designed to protect existing equipment from negative side effects of the dust. A study was performed to demonstrate the capabilities of the new facility and to compare results with experimental trends formerly established in the literature. Forty-micron limestone dust with a layer thickness of 3.2 mm was subjected to Mach 1.22 and 1.38 shock waves, and a high-speed shadowgraph was used for flow visualization. Dust layer rise height was graphed with respect to shock wave propagation. Dust particles subjected to a Mach 1.38 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to a Mach 1.22 shock wave. These results are in agreement with trends found in the literature, and a new area of investigation was identified.
245

Influence of coil characteristics on heat transfer to Newtonian fluids

Prabhanjan, Devanahalli G. January 2000 (has links)
A water bath thermal Processor was designed and built to study the influence of helical coil characteristics on heat transfer to Newtonian fluids like water and base oil with three different viscosities. The system consisted of a thermally insulated water bath, an electric heater, pump to re-circulate water in the bath and for pumping the processing fluid through the coil, copper helical coils and a storage tank for the processing fluid. / Comparative study has shown that the outer and total heat transfer coefficients were significantly lower in natural than in forced convection water bath. However, inner heat transfer coefficient was not significantly affected. Flow rate as low as 0.001 m.s-1 in the water bath improved the outer and total heat transfer coefficients by 35 and 22% respectively. One could expect a higher rate with an increase in water re-circulation rate inside the water bath. Percent rise in heat transfer was limited to seven with respect to inner heat transfer. With the Pearson correlation, it was possible to express total heat transfer rate directly in terms of outer and inner rates. Significant interactions were observed between variables and constants. / Experiments with 2 pitch cases were conducted with water to water heat transfer using coils to determine the Nusselt number correlation for natural convection. Characteristic lengths were changed in the models. The Nusselt number was under-predicted by 25 to 37% for water bath temperatures of 75° and 95°C respectively. Flow rate inside the coil had slight effect on Nusselt number due to change in the temperature gradient along the length of the coil. / Studies conducted with three base oils have shown significant difference in viscosity after heating the oil for several turns. Each fluid was heated in a distinct flow regime. The observed Nusselt number inside the coil for low Reynolds number was as high as an order of magnitude than the predicted values calculated by Seider-Tate relation for laminar flow. Vorticies formed associated with the eddy structure could very well be the cause for this kind of rise in the value. / Preliminary study conducted has shown a higher rise in temperature of processing fluid in case of helical coil compared to that of a straight tube. Larger the diameter of the tube better was the heat transfer. An elevated bath temperature had higher heat transfer.
246

CO₂-expanded liquids for separation and reaction

Xie, Xiaofeng 08 1900 (has links)
No description available.
247

Synthesis, blending, and doping of electrically conducting poly(3-undecylbithiophene) in supercritical carbon dioxide

Webb, Kimberly Faye 12 1900 (has links)
No description available.
248

Non-Newtonian conversion of emulsion liquid membranes in the extraction of lead and zinc from simulated wastewater

Gilbert, Christopher Donald 12 1900 (has links)
No description available.
249

Benign processing with carbon dioxide

Eason, Brandon Corey 05 1900 (has links)
No description available.
250

Environmentally benign chemical processing using supercritical carbon dioxide and near-critical water

Nolen, Shane Anthony 12 1900 (has links)
No description available.

Page generated in 0.0282 seconds