Spelling suggestions: "subject:"plume tests"" "subject:"flume tests""
1 |
Temporal and Thermal Effects on Fluvial Erosion of Cohesive Streambank SoilsAkinola, Akinrotimi Idowu 17 August 2018 (has links)
In the United States, the annual cost of on-site soil erosion problems such as soil and nutrient losses, and off-site soil erosion problems such as sedimentation of lakes and river, loss of navigable waterways, flooding and water quality impairment, has been estimated at 44 billion USD (Pimentel, 1995; Telles, 2011). While eroding sediment sources can either be from land or from stream/river systems, the erosion from streambanks can be quite significant, reaching up to 80% of sediment leaving a watershed (Simon et al 2002; Simon and Rinaldi 2006). Despite many decades of research one the erosion of cohesive soils by flowing water (fluvial erosion), this significant aspect of environmental sustainability and engineering is still poorly understood. While past studies have given invaluable insight into fluvial erosion, this process is still poorly understood. Therefore, the objective of this dissertation was to examine the relationship between time and erosion resistance of remolded cohesive soils, and to quantify and model the effects soil and water temperature on the fluvial erosion of cohesive soils
First, erosion tests were performed to investigate how soil erosion resistance develops over time using three natural soils and testing in a laboratory water channel. Results showed that the erosion rate of the soils decreased significantly over the time since the soils were wetted. This study indicates researchers need to report their sample preparation methods in detail, including the time between sample wetting and sample testing.
Second, erosion tests were performed at multiple soil and water temperatures. Results showed that increases in water temperature led to increased erosion rates while increases in soil temperature resulted in decreased erosion rate. When soil and water temperatures were equal, erosion results were not significantly different. Results also showed a linear relationship between erosion rate and the difference between soil and water temperatures, indicating erosion resistance decreased as heat energy was added to the soil.
Lastly, two common erosion models (the excess shear stress and the Wilson models) were evaluated, and were modified to account for soil and water temperature effects. Results showed that, compared to the original models, the modified models were better in predicting erosion rates. However, significant error between model predictions and measured erosion rates still existed.
Overall, these results improve the current state of knowledge of how erosion resistance of remolded cohesive soils evolves with time, showing the importance of this factor in the design of cohesive erosion experiments. Also, the results show that by accounting for thermal effects on erosion rate, the usability of erosion models can be improved in their use for erosion predictions in soil and water conservation and engineering practice. / PHD / In the United States, the annual cost of on-site soil erosion problems such as soil and nutrient losses, and off-site soil erosion problems such as sedimentation of lakes and river, loss of navigable waterways, flooding and water quality impairment, has been estimated at 44 billion USD (Pimentel, 1995; Telles, 2011). While eroding sediment sources can either be from land or from stream/river systems, the erosion from streambanks can be quite significant, reaching up to 80% of sediment leaving a watershed (Simon et al 2002; Simon and Rinaldi 2006). Despite many decades of research one the erosion of cohesive soils by flowing water (fluvial erosion), this significant aspect of environmental sustainability and engineering is still poorly understood. While past studies have given invaluable insight into fluvial erosion, this process is still poorly understood. Therefore, the objective of this dissertation was to examine the relationship between time and erosion resistance of remolded cohesive soils, and to quantify and model the effects soil and water temperature on the fluvial erosion of cohesive soils
First, erosion tests were performed to investigate how soil erosion resistance develops over time using three natural soils and testing in a laboratory water channel. Results showed that the erosion rate of the soils decreased significantly over the time since the soils were wetted. This study indicates researchers need to report their sample preparation methods in detail, including the time between sample wetting and sample testing.
Second, erosion tests were performed at multiple soil and water temperatures. Results showed that increases in water temperature led to increased erosion rates while increases in soil vi temperature resulted in decreased erosion rate. When soil and water temperatures were equal, erosion results were not significantly different. Results also showed a linear relationship between erosion rate and the difference between soil and water temperatures, indicating erosion resistance decreased as heat energy was added to the soil.
Lastly, two common erosion models (the excess shear stress and the Wilson models) were evaluated, and were modified to account for soil and water temperature effects. Results showed that, compared to the original models, the modified models were better in predicting erosion rates. However, significant error between model predictions and measured erosion rates still existed.
Overall, these results improve the current state of knowledge of how erosion resistance of remolded cohesive soils evolves with time, showing the importance of this factor in the design of cohesive erosion experiments. Also, the results show that by accounting for thermal effects on erosion rate, the usability of erosion models can be improved in their use for erosion predictions in soil and water conservation and engineering practice.
|
2 |
Time development of local scour at a bridge pier fitted with a collarAlabi, Patrick Dare 23 August 2006
A series of relatively recent bridge failures due to pier scour, as reported in literature, has rekindled interest in furthering our understanding of the scour process and for developing improved ways of protecting bridges against scour. Moreover, increased attention is being given to the state of Canadas infrastructure, a major aspect of which is the transportation network. In part, there is concern about both the impact of a failure on the handling of traffic flow while the failure is being remedied and on the cost of replacing the failed system component. As such, attention is being given to the scour design of new bridges and to the inspection, maintenance and management of existing bridge structures. The two major countermeasure techniques employed for preventing or minimising local scour at bridge piers are increased scour resistance and flow alteration. In the former case, the objective is to combat the erosive action of the scour-inducing mechanisms using hard engineering materials or physical barriers such as rock riprap. In the latter case, the objective is to either inhibit the formation of the scour-inducing mechanisms or to cause the scour to be shifted away from the immediate vicinity of the pier. This research focuses on a particular application of the latter technique. <p> In this study, the use of collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. The adoption of a collar is based on the concept that its existence will sufficiently inhibit and/or deflect the local scour mechanisms so as to reduce the local scour immediately adjacent to the pier. The overall objective of the research is to study the temporal development of the scour for a pier fitted with a collar and a pier without a collar. More specifically, the objectives are: i) to evaluate the effectiveness of a pier collar for mitigating the depth of scour that would otherwise occur at a bridge pier; and ii) to assess the occurrence of an equilibrium scour condition, if achieved, or of the implications of not achieving such a condition in respect of interpreting the results obtained from a physical hydraulic model study. <p>The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. Tests were conducted using two different pier diameters so as to determine the effect of pier diameter on the temporal development of scour for a plain pier. Also investigated was the effect of collar size on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. Several equations for the temporal development of scour depth and those for the prediction of the equilibrium scour depth were tested as part of this study. <p>The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. The depth of the scour hole increases as the duration of the increased flow that initiates the scour increases. The extent of scour observed at the pier also increases as the duration of the tests increases. It was found that the temporal development of the scour hole at the pier was dependent on whether or not the pier was fitted with a collar placed at the bed level. The pathway to an equilibrium scour depth is different depending on whether the pier is fitted with a collar or not. With a collar in place, the development of the scour hole is considerably delayed. A truly equilibrium scour condition is not readily attainable and was not achieved in the work reported herein. It was demonstrated that wrong conclusions may be reached if a test is stopped short of an equilibrium state. As regards the temporal development of scour depth and for the tests in which no collar was fitted to the pier, it was noted that the form of equation that fits the experimental data well was the one given by Franzetti et al. (1982). Furthermore, it is possible to reach a variety of conclusions about the efficacy of using collars as a pier scour countermeasure technique, depending on which definition of time to equilibrium scour is adopted.
|
3 |
Time development of local scour at a bridge pier fitted with a collarAlabi, Patrick Dare 23 August 2006 (has links)
A series of relatively recent bridge failures due to pier scour, as reported in literature, has rekindled interest in furthering our understanding of the scour process and for developing improved ways of protecting bridges against scour. Moreover, increased attention is being given to the state of Canadas infrastructure, a major aspect of which is the transportation network. In part, there is concern about both the impact of a failure on the handling of traffic flow while the failure is being remedied and on the cost of replacing the failed system component. As such, attention is being given to the scour design of new bridges and to the inspection, maintenance and management of existing bridge structures. The two major countermeasure techniques employed for preventing or minimising local scour at bridge piers are increased scour resistance and flow alteration. In the former case, the objective is to combat the erosive action of the scour-inducing mechanisms using hard engineering materials or physical barriers such as rock riprap. In the latter case, the objective is to either inhibit the formation of the scour-inducing mechanisms or to cause the scour to be shifted away from the immediate vicinity of the pier. This research focuses on a particular application of the latter technique. <p> In this study, the use of collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. The adoption of a collar is based on the concept that its existence will sufficiently inhibit and/or deflect the local scour mechanisms so as to reduce the local scour immediately adjacent to the pier. The overall objective of the research is to study the temporal development of the scour for a pier fitted with a collar and a pier without a collar. More specifically, the objectives are: i) to evaluate the effectiveness of a pier collar for mitigating the depth of scour that would otherwise occur at a bridge pier; and ii) to assess the occurrence of an equilibrium scour condition, if achieved, or of the implications of not achieving such a condition in respect of interpreting the results obtained from a physical hydraulic model study. <p>The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. Tests were conducted using two different pier diameters so as to determine the effect of pier diameter on the temporal development of scour for a plain pier. Also investigated was the effect of collar size on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. Several equations for the temporal development of scour depth and those for the prediction of the equilibrium scour depth were tested as part of this study. <p>The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. The depth of the scour hole increases as the duration of the increased flow that initiates the scour increases. The extent of scour observed at the pier also increases as the duration of the tests increases. It was found that the temporal development of the scour hole at the pier was dependent on whether or not the pier was fitted with a collar placed at the bed level. The pathway to an equilibrium scour depth is different depending on whether the pier is fitted with a collar or not. With a collar in place, the development of the scour hole is considerably delayed. A truly equilibrium scour condition is not readily attainable and was not achieved in the work reported herein. It was demonstrated that wrong conclusions may be reached if a test is stopped short of an equilibrium state. As regards the temporal development of scour depth and for the tests in which no collar was fitted to the pier, it was noted that the form of equation that fits the experimental data well was the one given by Franzetti et al. (1982). Furthermore, it is possible to reach a variety of conclusions about the efficacy of using collars as a pier scour countermeasure technique, depending on which definition of time to equilibrium scour is adopted.
|
4 |
Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailingsMiller, Warren Gregory 11 1900 (has links)
A study was conducted to evaluate the properties and processes influencing the rate and magnitude of volume decrease and strength gain for oil sand fine tailings resulting from a change in bitumen extraction process (caustic versus non-caustic) and the effect of adding a coagulant to caustic fine tailings.
Laboratory flume deposition tests were carried out with the objective to hydraulically deposit oil sand tailings and compare the effects of extraction processes on the nature of beach deposits in terms of geometry, particle size distribution, and density. A good correlation exists between flume deposition tests results using oil sand tailings and the various other tailings materials. These comparisons show the reliability and effectiveness of flume deposition tests in terms of establishing general relationships and can serve as a guide to predict beach slopes.
Fine tailings were collected from the various flume tests and a comprehensive description of physical and chemical characteristics of the different fine tailings was carried out. The characteristics of the fine tailings is presented in terms of index properties, mineralogy, specific surface area, water chemistry, liquid limits, particle size distribution and structure. The influence of these fundamental properties on the compressibility, hydraulic conductivity and shear strength properties of the fine tailings was assessed. Fourteen two meter and one meter high standpipe tests were instrumented to monitor the rate and magnitude of self-weight consolidation of the different fine tailings materials. Consolidation tests using slurry consolidometers were carried out to determine consolidation properties, namely compressibility and hydraulic conductivity, as well as the effect of adding a coagulant (calcium sulphate [CaSO4]) to caustic fine tailings. The thixotropic strength of the fine tailings was examined by measuring shear strength over time using a vane shear apparatus.
A difference in water chemistry during bitumen extraction was concluded to be the cause of substantial differences in particle size distributions and degree of dispersion of the comparable caustic and non-caustic fine tailings. The degree of dispersion was consistent with predictions for dispersed clays established by the sodium adsorption ratio (SAR) values for these materials. The biggest advantage of non-caustic fine tailings and treating caustic fine tailings with coagulant is an increased initial settlement rate and slightly increased hydraulic conductivity at higher void ratios. Thereafter, compressibility and hydraulic conductivity are governed by effective stress. The chemical characteristics of fine tailings (water chemistry, degree of dispersion) do not have a significant impact on their compressibility behaviour and have only a small influence at high void ratio (low effective stress). Fine tailings from a caustic based extraction process had relatively higher shear strengths than comparable non-caustic fine tailings at equivalent void ratios. However, shear strength differences were small and the overall impact on consolidation behaviour, which also depends on compressibility and hydraulic conductivity, is not expected to be significant.
|
5 |
Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailingsMiller, Warren Gregory Unknown Date
No description available.
|
Page generated in 0.0439 seconds